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Preface

Formal Requirements

Titles

English title: “Human cognition of geometric shapes, a window into
the mental representation of abstract concepts”

Titre français : « La cognition des formes géométriques chez l’humain,
une fenêtre sur la représentation mentale des concepts abstraits »

English Summary (4000 characters)

Natural language is not the only hallmark of humans’ singular cogni‐
tive abilities. Inmy PhDwork, and in line with the language of thought
literature, I argue that there could exist several internal languages; in
particular I show that cognition involving geometric shapes requires a
set of discrete, symbolic mental representations that act as an internal
mental language. Under that view, perceiving a shape is comparable
to the process of program induction: ෽inding the shape’s shortest
representation in the internal mental language. I test this hypothesis
by studying the perception and working memory of geometric shapes
in a series of studies featuring both cross‐cultural, developmental,
and cross‐species behavioral experiments, diverse neuroimaging
techniques in adults and infants, and computational modeling with
both symbolic models and neural networks.
First, leveraging an intruder task with quadrilateral shapes, I show
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that humans of diverse education, age and culture share a sense of
geometric complexity wherein some shapes are consistently simpler
than others, but that baboons lack this sense even after adequate
extensive training. Arti෽icial neural networks of object recognition
෽it all baboons’ data well, but explaining humans’ behavior requires
using additional symbolic properties such as the presence of right
angles. Symbolic models of the humans’ behavior generalize to
several related tasks, indicating robustness in the choice of primitives
the models leverage. This sharp dissociation suggests that two
strategies are available to encode geometric shapes: both humans and
non‐human primates share a perceptual strategy, well captured by
models of the ventral visual pathway, but only human have access to
an exact, symbolic strategy. Using magnetoencephalography during a
passive shape perception task, I con෽irm this by identifying the neural
dynamics of both a visual and a symbolic strategy. I shed light on an
early occipital response that resembles the neural network models,
followed by a slower, more dorsal response similar to the symbolic
model. At the same time, using electroencephalography, I provide
preliminary evidence for the existence of the symbolic strategy
already in three‐month‐old infants. Using functional MRI, I argue that
geometric shape perception also recruits areas previously argued to
belong to a non‐linguistic network for mathematical reasoning.

Going beyond a small set of highly controlled shapes, I set to try to ac‐
count for all geometric shapes produced by humans: Imake a concrete
proposition for a generative mental language of geometric shapes in‐
spired by attested human productions. I argue that perceiving a shape
means ෽inding the shortest program in this language that generates
the shape, connecting shape perception in humans to the literature on
program induction. With this language, I show that program induction
is in principle a tractable problem using the DreamCoder algorithm I
helped implement. Then, I use this language to generate shapes of in‐
creasingly high complexity and show that humans’ performance in a
match‐to‐sample task for a shape correlate with the length of its short‐
est program. To decouple this result from the exact language propo‐
sition, I also derive more general additive rules that any alternative
languages must obey and I provide empirical evidence for the valid‐
ity of these laws. Finally, I show that if a simple perceptual strategy
is enough to answer, participants may not deploy a symbolic strategy
even if it exists – which suggests new ways of making human and non‐
human primates converge, and in turn re෽ine theories.
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Taken all together, these results support the existence of a discrete,
symbolic set of mental representations for geometric shapes, which
coexists with bottom‐up visual representations. This work paves the
way for integrated neuro‐symbolic models of shape perception while
challenging currently dominant object‐recognition basedmodels of vi‐
sual perception.

English Summary (1000 characters)

Natural language is not the only hallmark of humans’ singular cogni‐
tive abilities. I propose that cognition involving geometric shapes re‐
quires a set of discrete, symbolic mental representations that act as a
mental language, and that perceiving a shape is performing program
induction: ෽inding the shape’s shortest representation in this internal
language. First, I show that all humans share a sense of geometric com‐
plexity, but that baboons lack this sense even after training. Arti෽icial
neural networks of object recognition ෽it baboons’ data, but explaining
humans’ behavior requires using additional symbolic properties such
as the presence of right angles. Then, I identify the neural dynamics of
both a visual and a symbolic strategy of shape perception using brain
imagingmethods, and I provide preliminary evidence for the existence
of the symbolic strategy in infants. Finally, I propose and test a mental
language of geometric shapes inspired by attested human geometric
productions.

Résumé français (4000 caractères)

Le langage naturel n’est pas la seule capacité cognitive qui distingue
les humains. Dans la lignée de la littérature sur les langages de la
pensée, je défends l’idée qu’existent de nombreux langages internes
qui participent de la singularité cognitive humaine. Je concentre
mon travail sur la perception des formes géométriques pour montrer
qu’elle requiert un ensemble de représentations mentales symbol‐
iques qui ressemblent à un langage mental interne ; selon cette
hypothèse, la perception d’une forme géométrique déclenche un
mécanisme cognitif d’induction de programme. Je teste cette proposi‐
tion via une série d’expériences comportementales cross‐culturelles,
développementales, et interespèces ; via plusieurs méthodologies
d’imagerie cérébrale chez l’adulte et le nourrisson ; et via de la mod‐
élisation computationnelle soit formelle, soit fondée sur des réseaux
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de neurones arti෽iciels.

Dans une tâche de détection d’intrus parmi des quadrilatères, le
comportement d’humains d’âges, éducations et cultures variées est
homogène, de plus il se distingue du comportement de babouins
même après un entrainement adéquat et intensif. Des réseaux de neu‐
rones arti෽iciels pour la reconnaissance d’objets sont de bons modèles
des babouins, mais il faut y adjoindre des propriétés symboliques
pour rendre compte du comportement des humains. En contrastant
ces modèles, il apparaı̂t que pour réaliser cette tâche, les deux popula‐
tions partagent des mécanismes visuels, mais que seuls les humains
ont en plus accès à des propriétés symboliques. Chez l’humain, je
con෽irme cette théorie en modélisant les processus neuronaux de la
perception de formes obtenus en magnétoencéphalographie en ren‐
dant compte d’une première réponse cérébrale, occipitale et rapide,
qui ressemble aux modèles fondés sur les réseaux de neurones, suivie
d’une réponse lente et dorso‐frontale qui partage des propriétés avec
le modèle symbolique. Je fournis aussi des preuves préliminaires
de l’existence de la stratégie symbolique chez le nourrisson de trois
mois. Grâce à une étude en IRM fonctionnelle, je montre également
que la perception de formes géométriques fait aussi appel à un réseau
cérébral précédemment identi෽ié pour la cognition mathématique, et
distinct du réseau classique du langage.

Pour ne pasme limiter à un petit ensemble de formes, je tente demod‐
éliser toutes les formes géométriques : à cette ෽in, je propose une ver‐
sion explicite de langagemental de la géométrie enm’appuyant sur des
productions géométriques humaines attestées. Je propose de relier le
problème de la perception des formes géométriques au problème de
l’induction de programme : étant donné uniquement le résultat d’un
programme, il s’agit d’en trouver le meilleur candidat dans un langage
donné. Grâce à cette proposition concrète de langage, il est possible
de générer les formes de complexité croissante : dans une tâche de
reconnaissance différée, je véri෽ie alors que les performances dépen‐
dent de la longueur du programme le plus court, même après avoir
corrigé pour les propriétés visuelles de bas niveaux. Pour découpler
ce résultat de ma proposition concrète de langage, je dérive aussi des
lois additives de la perception des formes géométriques que doit re‐
specter toute proposition alternative, et je montre qu’elles sont véri‐
෽iées dans une autre expérience. En෽in, je montre que lorsqu’il existe
une stratégie visuelle aussi appropriée qu’une stratégie symbolique,
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les humains ne déploient pas la stratégie symbolique, ce qui suggère
de nouvelles façons de concevoir des expériences comparatives entre
les humains et des primates non humains.

Ensemble, ces résultats suggèrent l’existence d’un ensemble dis‐
cret et symbolique de représentations mentales pour les formes
géométriques qui coexiste avec une représentation visuelle classique.
Ce travail ouvre la voie vers des modèles neuro‐symboliques de la
perception des formes, et remet en question les modèles dominants
qui n’utilisent que la représentation visuelle.

Résumé français (1000 caractères)

Le langage naturel n’est pas la seule capacité cognitive qui distingue
les humains. Dans cette thèse, je défends l’idée que la cognition hu‐
maine des formes géométriques passe par un langage mental qui leur
est exclusif. Dans une tâche de détection d’intrus, le comportement
d’humains est homogène et se distingue de celui de babouins dans
son utilisation de propriétés symboliques comme la présence d’angles
droits. En contrastant unmodèle fondé sur des réseaux de neurones et
un modèle symbolique, je rends compte de cette différence : les deux
populations partagent les mécanismes visuels, mais seuls les humains
ont accès auxpropriétés symboliques. Chez l’humain, je con෽irme cette
théorie en modélisant les processus neuronaux de la perception de
formes obtenus en magnétoencéphalographie et IRM fonctionnelle. Je
fournis aussi des preuves préliminaires de l’existence de la stratégie
symbolique chez le nourrisson. En෽in, je propose une version explicite
de langage mental de la géométrie.

Originality of the Work

All the work presented in this manuscript is mine and was performed
during my PhD. The writing is mostly original to the thesis, except for
chapters 1 and 4, which were respectively published as follows:

• Sablé‐Meyer, M., Fagot, J., Caparos, S., van Kerkoerle, T., Amalric,
M., & Dehaene, S. (2021). Sensitivity to geometric shape regu‐
larity in humans and baboons: A putative signature of human
singularity. Proceedings of the National Academy of Sciences,
118(16).
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• Sablé‐Meyer,M., Ellis, K., Tenenbaum, J., &Dehaene, S. (2021). A
language of thought for the mental representation of geometric
shapes. Minor revisions tobe submitted to the journal “Cognitive
Psychology”

Some elements of the introduction and conclusion were borrowed
from the article hereafter, as well as from a grant proposal submitted
to the FYSSEN Foundation.

• Dehaene S., Al Roumi F., Lakretz Y., Planton S. & Sablé‐Meyer
M. (2022). Symbols and mental programs: a hypothesis about
human singularity. Trends in Cognitive Sciences.

In addition to the work presented in this manuscript, two additional
෽irst‐author articleswere published, one from continued collaboration
after an internship supervised by Pr. Salvador Mascarenhas at ENS,
and the other one in a collaboration with Lorenzo Ciccione, a friend
and colleague:

• Sablé‐Meyer, M., & Mascarenhas, S. (2021). Indirect illusory in‐
ferences from disjunction: a new bridge between deductive in‐
ference and representativeness. Review of Philosophy and Psy‐
chology, 1‐26.

• Ciccione, L., Sablé‐Meyer, M., & Dehaene, S. (2022). Analyzing
the misperception of exponential growth in graphs. Cognition,
225, 105112.
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Ainsi certes, nous ne pourrions jamais connaı̂tre le triangle
géométrique par celui que nous voyons tracé sur le papier, si
notre esprit d’ailleurs n’en avait eu l’idée

Descartes, Cinq Rép., AT VII, 382 ; OC IV‐1, 574.

What is a point? Euclid famously kickstarted geometry as we know
it today with his de෽inition n°1, “A point is that which has no part”
(“Σημειον εστιν, ου μερος ουθεν”; (Byrne & Euclid, 1847)). There is
no physical entity to which this de෽inition would apply; a point must
therefore exist only in the mind of the beholder. What mental and neu‐
ralmechanismsmake it possible to entertain such concepts? Are those
mechanisms only available to humans, and are they deeply tied to nat‐
ural language? In the present work, I propose that even the simplest
geometric concepts are uniquely human, and that they lie at the foun‐
dation of a rich generative system of shapes that behaves like an in‐
ternal mental language. I argue that humans across ages, cultures and
education levels share this sense of geometry, and I explore its neural
mechanisms.

Observe a child drawing a person: the drawingwill surely look very dif‐
ferent from the visual percept. What is depicted has a structural and
conceptual relation to the visual world, but is a poor rendition of what
is perceived. Figure 1 presents three examples of drawings from chil‐
dren: the topone is an explicit “drawaperson” test takenby a four‐and‐
a‐half‐year‐old child, while the two bottom ones, taken from (Saito et
al., 2014), were respectively produced by a 2y5m girl and 2y7mboy, in
free drawings sessions, and were described a posteriori by the young
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Figure 1: Examples of visual productions by children. Bottom row borrowed from (Saito et al., 2014)

artists respectively as “railroad” and “train”: a ෽itting drawing for that
age, but quite a perceptual leap of faith.

The obviousmotor limitations cannot account for the nature ofwhat is
visually implausible, nor the striking consistency in choosing what to
depict. Choosingwhat to depict could come frommany sources during
development andmight be very dependent on culture, yet the very fact
that an implausible representation constitutes an acceptable produc‐
tion both for the child and for its tutors indicates a remarkable ability
to engage in a make‐believe state where erratic lines on paper repre‐
sent something in the world.

But if perception, at a high level, superimposes structures onto visual
percepts, then productions such as stick ෽igures for a person can be
seen as producing the underlying structure instead of the perceived
object. In fact, some commonadvice about learning to drawas an adult
involves copying other drawings upside down (both the original and
the copy) to avoid being distracted by what we recognize and instead
focus on what we see.

Studying the perception of complex scenes and rich visual environ‐
ments requires controlling for innumerable confounding factors. Luck‐
ily, human production has featured for millennia depictions that are
not obviously related to visual percepts at all, but rather seem like ab‐
stract productions in and of themselves: geometric shapes. Whether
engraved on stones or laid on the ground with giant boulders, geomet‐
ric productions cover the world and span over at least half a million
years – and they are unmistakably human. Furthermore, the shapes
featured canbeverydifferent, both acrosspaleonto‐archeological sites
and within sites: Lascaux, in the south of France, has been argued to
feature over 13 different types of non‐symbolic representations, in‐
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cluding crosshatches and squares (Von Petzinger, 2009).
In this thesis I explore the possibility that humans, and possibly hu‐
mans only, mentally represent shapes as much more than their visual
impressions by superimposing structure onto their perception. More
speci෽ically, I argue that all humans possess the ability to represent
geometric shapes using an internal language specialized for that pur‐
pose. I argue that they naturally deploy this mechanism when faced
with geometric shapes, in addition to othermechanisms of perception.
As a contrasting point, I provide evidence that baboons either do not
possess this competence, or do not deploy it even when it would be
extremely useful. I model the difference between humans and non‐
human primates with two very different classes of models.
First, I will provide a brief overview of the production of geometric
shapes across history and culture, together with a review of the
experimental cognitive science literature regarding geometry in
humans. Then I will introduce the Language of Thought Hypothesis
(LOTH), with an emphasis on “programs” as candidates for mental
representations. I will connect the LOTH to cognitive science research
performed using information theory, with introductory elements on
Kolmogorov complexity and Minimum Description Length (MDL).
Then I will connect the LOTH to the problem of program induction
in computer science, and provide a general introduction to a few
dominants programming language paradigms. Finally, will outline
and brie෽ly summarize the structure of the work reported in this
document.

Evidence of Geometrical Productions in Humans

Paleontological Evidence

Evidence for abstract concepts of geometry, including rectilinear‐
ity, parallelism, perpendicularity and symmetries, is widespread
throughout prehistory. About 70,000 years ago, Homo Sapiens at
Blombos cave carved a piece of ocher with three interlocking sets of
parallel lines forming equilateral triangles, diamonds and hexagons
(Henshilwood et al., 2002). Much earlier, approximately 540,000
years ago, homo Erectus in Java carved a zig‐zag pattern on a shell
(J. C. A. Joordens et al., 2015). Such a zig‐zag may look simple, but it
approximately respects geometric constraints of equal lengths, equal
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Figure 2: Geometric shapes in human cultural history. A, examples of small‐ and large‐scale geometric
drawings and constructions (From left to right and top to bottom: an engraved slab from Blombos caves dating
about 70.000 years ago (Henshilwood et al., 2002); zigzag pattern engraved on a shell in Java approximately
540.000 years ago (J. C. A. Joordens et al., 2015); Boscawen‐Ûn’s Bronze Age elliptical cromlech in Cornwall;
spiral stone engraving on Signal Hill in SaguaroNational Park, Arizona, dated 550 to 1550 years ago; geometrical
shapes below the painting of a Megaloceros in Lascaux, France, typically dated to be 17,000 years old)
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angles and parallelism, and is undoubtedly attributed to the homo
genus.

Even earlier, about ~1.8 million years ago, ancient humans have been
carving spheroids (sphere‐like stones) and bifaces — stones possess‐
ing two orthogonal planes of symmetry (Le Tensorer, 2006). The vast
number of bifaces, their near‐perfect symmetry (which is not required
for them to operate as ef෽icient tools (Le Tensorer, 2006)), and the
archeological evidence that many were never used as tools, suggest
that an aesthetic drive for symmetry was already present in ancient
humans.

What is more, a single site may feature many different human produc‐
tions, mixing representative ones with more geometric ones. Lascaux,
home of the famous Megaloceros and its accompanying geometric
shapes (featured in Figure 15), features 13 types of geometric shapes
in a taxonomy of 26 possible productions, and there are as many
as 153 sites in France alone which feature at least one geometric
production (Von Petzinger, 2009).

Anthropological and Cross‐Cultural Evidence

Contemporary cognitive anthropology corroborates those ෽indings.
Cognitive tests performed in relatively isolated human groups such
as the Mundurucu from the Amazon, the Himba from Namibia, or
indigenous groups from Northern Australia, show that in the absence
of formal western education in mathematics, adults and even children
already possess strong intuitions of numerical and geometric concepts
(Amalric et al., 2017; Butterworth et al., 2008; Dehaene et al., 2006;
Izard et al., 2011; Pica et al., 2004; Sablé‐Meyer, Fagot, et al., 2021).

Indeed, adults without formal western education share with Western
preschoolers a large repertoire of abstract geometric concepts (De‐
haene et al., 2006) and use them to capture the regularities in spatial
sequences (Amalric et al., 2017) and quadrilateral shapes such as
squares or parallelograms (Sablé‐Meyer, Fagot, et al., 2021). They also
possess sophisticated intuitions of how parallel lines behave under
planar and spherical geometry, such as the unicity of a parallel line
passing through a given point on the plane (Izard et al., 2011).
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Developmental Evidence

Another piece of evidence arises from developmental data. Preschool‐
ers and even infants have been shown to possess sophisticated
intuitions of space (Hermer & Spelke, 1994; Landau et al., 1981;
Newcombe et al., 2005), spatial sequences (Amalric et al., 2017),
and mirror symmetry (Bornstein et al., 1978). Indeed, preschoolers’
drawings already show a tendency to represent abstract properties
of objects rather than the object itself. Although they look primitive,
drawings of a house as a triangle on top of a square, or a person as
a stick ෽igure with a round head, suggest a remarkable capacity for
abstracting away from the actual shape and attending to its principal
axes, at the expense of realism. Numerous tests leverage this geomet‐
ric competence to assess a child’s cognitive development by counting
the number of correct or incorrect abstract properties, for instance
when asked to draw a person (Goodenough, 1926; Harris, 1963; Long
et al., 2019; Prewett et al., 1988; Reynolds & Hickman, 2004). There
is some evidence, however limited, that this ability may be speci෽ically
human: when given pencils or a tablet computer, other non‐human
primates do not draw any abstract shapes or recognizable ෽igures, but
mostly generate shapeless scribbles (Saito et al., 2014; Tanaka et al.,
2003).
From these observations, one is left wondering what could be the
origins and evolutionary advantage of the human competence for
abstract geometry. I propose that it is a speci෽ic case, in the visual
domain, of a general human ability to decompose complex percepts
and ideas into composable, reusable parts – an ability which led to
a massive enhancement of human productions, from architecture to
tool building, and of the capacity to understand abstract features of
the environment.

Geometry as a Research Topic in Psychology

As early as in Plato’s Meno, Socrates is reported to have led an unedu‐
cated slave in a Greek household throughout a long maieutic process
to reach accurate conclusions about the relation between the area of
two squares; Socrates then concluded that “his soul must have always
possessed this knowledge”. Geometry as a segue into a deeper under‐
standing of human cognition is, therefore, a process at least 2350 years
old.
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Research projects involving geometric shapes are deeply intertwined
with many other research topics. The ෽irst, remarkably in෽luential
research project that intersects with geometric shape perception
is that of Gestalt Principles of perception. Shape perception has
also leaped forward thanks to an extensive research on medial axis
theory, or skeleton, of shapes. Spatial Cognition, the ability to orient
oneself in space, has also found a major role of geometric features
in spatial representations of animals. And of course, the literature
on mathematical cognition and symbolic thinking has turned its
attention on geometric shapes throughout its entire history. I provide
below a brief review, together with pointers to more extensive review,
of each of these research projects and how they relate to the work I
focus on in the rest of the manuscript.

Gestalt Perception

A C

B

Figure 3: A. Perceptual grouping induced by various properties. Observe how symmetry (on the top) and
parallelism (on the bottom) structure the perception of isolated line. B. Illusory, subjective contour integra‐
tion, borrowed from (Kanizsa, 1976). Despite the striking classical example on the left, the central observations
were about good continuation and is not related to geometric shapes. C. Example of figure‐ground stimulus
borrowed from (Peterson et al., 1991) which contrasts such stimuli with their upside‐down reversed counter‐
part and argues that object recognition must precede figure‐ground computations in vision.

It is remarkable how effortlessly the visual system of humans’ group
parts of a visual scene into individual, coherent objects. Historically, a
set of rules have been devised from introspection, these rules form the
basis of “Gestalt Perception”: theywere ෽irst described in (Wertheimer,
1912) and greatly impacted vision research. In 2012, for the anniver‐
sary of 100 years since the publication of the original article, two ex‐
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tensive reviews were published (Wagemans, Elder, et al., 2012; Wage‐
mans, Feldman, et al., 2012).

Gestalt Psychology puts forward many features of visual scenes which
give rise to percepts that go beyond the visual input. In particular, the
literature concerns itselfwith (i) perceptual grouping, where items are
perceived to belong to coherent groups by virtue of various proper‐
ties (see Figure 3.A for examples of grouping induced by symmetry
(top) and parallelism (bottom))., (ii) contour integration, where sepa‐
rate items are perceived as awhole outlining a contour (seeFigure 3.B
for example of illusory contour integration), and (iii) ෽igure‐ground re‐
lation, where ambiguity of simple stimuli are resolved by assuming
a superposition of different layers (see Figure 3.C for an example of
෽igure‐ground ambiguity). All of these phenomena have received ex‐
tensive experimental support, as well as neural mechanism accounts,
extensively reported in (Wagemans, Elder, et al., 2012).

In addition to the evidence in support of theGestalt principles, theprin‐
ciples have received a lot of attention fromaconceptual and theoretical
point of view, in particular framing early observations in terms of in‐
formation processing. Gestalt principles have been modeled in terms
of attractors in dynamical systems (Leeuwen, 1990), possibly optimiz‐
ing for neural resources, self‐adapting properties, Bayesian inference
given some information (Kersten et al., 2004), and optimal coding ef‐
෽iciency (starting with (Attneave, 1954)): an in‐depth history, includ‐
ing the successes, limitations, and differences between these models
is provided (Wagemans, Feldman, et al., 2012).

One important notion is that of good continuation and path integra‐
tion: good continuation is a Gestalt grouping principle stating that sep‐
arated objects that form a smooth contour tend to be grouped together
(Wertheimer, 1938). Models and neural evidence for path integration
as amechanism for good continuation, notably (Hubel &Wiesel, 1965;
Iacaruso et al., 2017; Ledgeway et al., 2005), are developed in chapter
4 with regard to the categorical perception of right angles suggested
by non‐intersection segments.

The literature on Gestalt perception is immense, and while it has
proven very insightful and fertile in vision research, it is not often
clear what it has to say about geometric shapes speci෽ically. Examples
such as the Kanizsa triangle in Figure 3.B (left) could lead one to
believe that geometric shapes play a central role in the ෽ield, but as
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highlighted in the original article about the example on the right in
the same ෽igure, “Geometric regularity is not a necessary condition for
the formation of subjective surfaces and contours. Amorphous shapes
are possible and irregular ෽igures can generate contours” (Kanizsa,
1976). That holds true for many other phenomena described, where
some geometric properties may prove useful, but there is no account
of geometric shapes as such.

Medial Axis Theory and shape skeleton

A B C

D

E

Figure 4: Examples of medial axis theory shapes. A. Example borrowed from (Philbrick, 1966) introducing
the first procedure for deriving the skeleton of a shape. B. Example of shape skeleton derived using Bayesian
estimator (borrowed from (Feldman & Singh, 2006)). Notice how the colors, corresponding to main skeleton
axes as opposed to minor “ribs”, correspond well to perceptually distinct parts of the shape. C. Results of an
unguided shape tapping (borrowed from (Firestone& Scholl, 2014)). Participants were presentedwith a shape
on a portable touch‐screen enabled tabled and could tap anywhere they wanted: the density of tapping cor‐
responds to important locations according to the Medial Axis Theory. D. Example of probability distribution
over branching when finding the optimal medial axis from a Bayesian perspective, connecting this approach
to the notion of Minimum Description Length (borrowed from (Feldman & Singh, 2006)). E. Recursive decom‐
position of an approximate 3D “human” into subparts featuring systematic medial‐axis structure; borrowed
from (Marr & Nishihara, 1978)

Another very in෽luential idea in shape processing is medial axis theory,
or shape skeletons. It was ෽irst introduced in (Blum, 1967; Philbrick,
1966), see Figure 4.A, as a tool to enable automatic analysis of visual
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scenes by computers, and it provides a dense and rich representation
of shapes that can then be used either in computational tools or for
neural modeling.
Medial axis theory has a long history in vision science: it has been
shown to predict neural activity in the visual cortex (Lee, 2003), and in
fact neural ෽iring patterns in cats has been cited as an inspirationwhen
the method was introduced (Hubel & Wiesel, 1965). The complexity
of a shape’s medial‐point description, a representation similar to its
skeleton, has been argued to correlates with behavior in a detection
task using Gabor patches to outline a shape (Kovács et al., 1998). Even
when merely tapping inside a shape without any additional instruc‐
tions, participants tend to choose locations that fall along the medial
axes, as displayed in Figure 4.C (Firestone & Scholl, 2014).
Medial axis theory also bears close relations with theories of the cog‐
nitive processes underlyingwhole‐part decomposition, see Figure 4.E
from (Marr&Nishihara, 1978) and (Biederman, 1987); in particular, it
has been argued that the inferred axes separating an object into parts
systematically cross skeleton axes (Singh et al., 1999)
The ෽irstmodels devised to compute the skeletonof a shapeweremath‐
ematical approximations of “grass෽ire propagation” (planar diffusion
of ෽ire, in a homogenous material, from point sources), and could oth‐
erwise bemechanically implementedwith successive defocusing of an
optic mechanism. But these early methods were not robust to noise
on the contours, and produce implausible skeleton in the presence of
jagged boundaries.
To break free of these issues, and in line with the idea of perception
as Bayesian inference (Kersten et al., 2004; Knill & Richards, 1996),
a Bayesian method for estimating the skeleton of shapes has been
proposed (Feldman & Singh, 2006), see Figure 4.B for an example
of decomposition of a (mostly smooth) hand. At its core, the model
optimizes the trade‐off between the complexity of a skeleton (the
Bayesian prior, see Figure 4.C) as approximated by its number of
branches and its curvature, and how well that skeleton ෽its a given
shape (the Bayesian likelihood).
Such methods are at the core of information‐theoretic approach of
understanding visual complexity, started with (Attneave, 1954); see
also (Donderi, 2006) for a review of these approaches. Information‐
theoretic considerations are also central to recent modeling of Gestalt
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principle, see (Wagemans, Feldman, et al., 2012). We reconsider these
notions again in chapter 5 when I compare the predictions of medial
axis theory to that of a symbolic generative language of geometric
shapes.
I want to point out that while skeletons of shapes have proven remark‐
ably useful for many sorts of shapes, and in particular contours of real
objects as depicted in Figure 4.A and .B, they may not be the most ap‐
propriate for dealing with geometric shapes speci෽ically. This obser‐
vation is discussed more extensively in chapter 5, where I consider
shapes such as circles and spirals: the former has a non‐informative
skeleton, and the latter has no skeleton per se.

Geometry and Spatial Representation

Humans, as well as other animals, are able to navigate their environ‐
ment: in order to do so, they must form internal mapping of the sur‐
rounding space, an ability referred to as spatial representation. There
are many mechanisms at play in spatial representation, and many ani‐
mals have been argued to possess some form of spatial representation:
of interest to this work is the use of purely geometric information as
one of the key mechanisms, ෽irst highlighted in (Cheng, 1986).

Figure 5: Illustration of the original experiment from (Cheng, 1986): the goal and its counterpart after
invariance by rotation are indicated with dots inside a rectangular room. Despite the four different corners,
and the disambiguating white wall, rats’ pattern of error support a geometry‐based spatial representation
system.

In the experiment featured in (Cheng, 1986), ratswere looking for a re‐
ward in a rectangular roomwithdistinctive features onall four corners,
one wall colored differently, and two corners with distinctive smells.
The patterns of reward‐seeking mistakes indicate that rats confused
two diagonally opposite corners, indicating that while they could use
the general geometry of the room as a cue, they couldn’t narrow the
research more.
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This observation has spawned an important literature about the pos‐
sible existence of a cognitive module for geometry, and its relation to
other, nongeometric features used in spatial representations. In‐depth
review of the literature on the use of geometry as a tool for spatial re‐
orientation can be found in (Cheng et al., 2013), (Cheng & Newcombe,
2005) and (Twyman & Newcombe, 2010).

A central debate in the literature on geometry and spatial represen‐
tation has been about the existence of a cognitive module for geome‐
try, and how it would integrate with other modules, memory, and non‐
geometric feature perception. Under the “geometry module” view of
spatial orientation, humans (and other animals) are endowed with a
module, in the sense of Fodor (Fodor, 1983), which would underlie
the geometric aspect of spatial orientation: this module would be lim‐
ited in abilities, but through education and language could serve as the
foundation of higher‐level geometric concepts in humans – while con‐
straining how these concepts develop (De Cruz, 2009).

The literature on spatial cognition is gigantic, and I confess to having a
super෽icial knowledge of its rami෽ications outside of its very direct re‐
lation to the cognition geometric shapes in and of themselves (see next
section). Indeed, what is at the center of thework I present here is cog‐
nition about geometric shapes, where the mental representations are
representations of the shapes, rather than geometric properties be‐
ing used as part of spatial orientation. I am interested in understand‐
ing how objects such as “a quadrilateral with exactly one right angle”
(chapter 1), or “a square of circles” (chapter 5) are represented. In
principle such geometric objects could be used for spatial navigation
(resp. in a room with exactly one right angle, or in a sequence of cir‐
cular rooms arranged in a square, for example), but the literature on
spatial orientation hasmostly focused on either fully regular or fully ir‐
regular quadrilateralsé and triangles (for an exception see (Hupbach
& Nadel, 2005)), across many species or age ranges, and tried to un‐
derstand how the geometric features interact with spatial orientation.

Symbolic Thought, Mathematics, and Core Knowledge

Unlikemany visual objects and categories, geometric shapes have nor‐
mative de෽initions: a circle has a number of de෽ining features, of which
features like its color or its position are not. Of course, real‐world rep‐
resentations of circles are by de෽inition never exact (e.g., because no
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curvature is ever mathematically constant), but under some assump‐
tions about the inference abilities of humans such considerations can
be mostly ignored. Thanks to this, geometric shapes can be used to
probe the understanding of de෽ining features (Satlow & Newcombe,
1998). But what are the mechanisms that enable our ability to un‐
derstand geometric shapes? Do other animals share this sense? Is it
rooted in natural language, or perhaps abilities for either approximate
numbers, or proto‐mathematics?
Jean Piaget published two seminal books in 1948, “La représentation
de l'espace chez l'enfant” and “La géométrie spontanée de l'enfant”:
both books break down cognitive development of children regarding
spatial and geometric concepts into successive stages, where each
stage is associated with the ability to manipulate new concepts, or the
same concepts more and more abstractly. For example, when asked
to compare the length of two immovable objects set apart, children in
the ෽irst stage might answer intuitively, while children in later stages
may rely on keeping hands at a ෽ixed distance while moving between
the two objects, or use a third, reference object to compare the two
target objects, successively. Piaget’s work is very empirically driven
but provides little theoretical insights as to the nature of the cognition
in geometry – instead, it focuses on taxonomizing “developmental
stages” related to many properties such as measurements, metrics for
angles and curves.
Piaget puts forward the theory that development of geometric abilities
goes through a speci෽ic order, wherein topological properties are con‐
structed ෽irst (nearness, enclosure, etc.), and then gradually Euclidean
properties emerge as relationbetween shapesbecome increasingly im‐
portant. In that work and in many subsequent studies, the question of
the Euclidean nature of intuitive geometry in humans was central; the
proposition is that shape is the de෽ining property of a geometrical ob‐
ject while size, location, rotation and sense are disregarded.

Figure 6: Retraced from (Mach, 1914); “two figures may be geometrically congruent, […] but could never
be recognized as the same.”

Yet, it has been noted as early as the beginning of the XXth century that
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rotations do impact identi෽ication of a shape (Mach, 1914), by contrast‐
ing the introspective perception of a square against that of a rotated
square, which is perceived categorically differently. Indeed, while the
two shapes featured in Figure 6 are identical from the point of view of
Euclidean geometry (both are squares), the secondone tends to beper‐
ceived as categorically different (and preschoolers may fail to identify
it as a square in a set of shapes (Halat & Dağli, 2016)) to the point that
a 45° rotated square may colloquially be referred to as a “diamond”.
This holds true despite extensive empirical evidence that geometric
objects have a rich internal representation which allows mental oper‐
ations. Roger Shepard in (Shepard & Metzler, 1971) famously showed
that the response time in deciding whether two rotated 3D tetris‐like
objects (as shown in Figure 7) were identical almost perfectly corre‐
lated with the angular difference. This correlation strongly supports
the idea that not only the mental representation carries information
about the orientation of the objects, but participants are performing
mental rotations on the representation themselves.

Figure 7: Borrowed from (Shepard&Metzler, 1971): stimuli and results fromamental rotation task involving
three‐dimensional tetris‐like objects.

More recently, the claim from Piaget that symbolic geometric proper‐
ties are learned in stages throughout education, from topological con‐
cepts such as “inside”, or “closed”, to Euclidean properties, has been
contested from another angle. Experiments suggest that in fact adults
and children from very different environments, including one without
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formalWestern education, perform remarkably similarly onmany geo‐
metric intruder tests (Dehaene et al., 2006) with categories as diverse
as topology, Euclidean properties, geometric ෽igures, symmetry and
sense, metric properties and geometric transformations. Interestingly,
the language of the Mundurukus has few words for the geometric con‐
cepts, and therefore this article also suggests that natural language is
not the vessel for geometric thoughts: a discussion of this Whor෽ian
problem is provided in (Newcombe & Uttal, 2006).

Another important question iswhether geometry forms a “core knowl‐
edge” (E. S. Spelke, 2003), i.e an evolutionary ancient, innate abilitywe
could share with other animals. I provide some arguments weighting
against this view in chapter 1 and in chapter 3, but there is still a
lot of evidence in favor of a version of this view, see (Tommasi et al.,
2012) for a review. A more nuanced view is that geometry would re‐
sult from the interaction of two lower‐level systems: one dedicated
to navigation, as discussed in the previous section, and one for visual
forms and object recognition; those two systems, when interacting in
humans, give rise to our ability for geometry (Carey, 2009; E. Spelke et
al., 2010).

This proposition prompts the question of whether natural language is
what enables this interaction. A similar hypothesis was formulated for
mathematical cognition, with support from in several ways: notably
because language plays a signi෽icant role in the development of spatial
reasoning (Pyers et al., 2010), and because deaf individuals who did
not learn a conventional language have a harder timemanipulating ex‐
act numbers (Hyde et al., 2011; Spaepen et al., 2011, 2013). But recent
neuroimaging studies ෽ind a systematic dissociation between language
networks and math networks (Amalric & Dehaene, 2016, 2017). Fur‐
thermore, infants have been shown to be able to solve geometric tasks
without being able to provide a justi෽ication for their decisions, either
through language or gesture (Calero et al., 2019).

Another important question is why humans appear to agree that the
“natural” form of geometry corresponds to the geometry entailed by
Euclid’s axiomatization. While the axioms formulated by Euclid are
formulated in an abstract fashion, many of its constituents can be ap‐
proximately drawn and observed, or can be experienced in space: one
can draw a line and a point outside that line, and observe that it is im‐
possible to draw twodistinct lines that are both parallel to the ෽irst one
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and go through the point1.
Towhat extent, then, is our geometric knowledge constrainedbyvisual
experience? On the onehandof the spectrum, onemight postulate that
perception is the very process by which we internalize whether cer‐
tain geometric statements are true or not (Giaquinto, 2005; Mumma,
2009): under that view then geometry must follow our visual expe‐
rience. Yet not all visual information is relevant for geometrical con‐
cepts (e.g., size, or orientation). A review of the arguments regarding
the question of the visual origin of Euclidean geometry is provided in
(Izard, 2022).

Programs as Candidates for Mental Represen‐
tations: A Take on the Language of Thought
Hypothesis

“Humans have a multi‐domain capacity and proclivity to infer
tree structures from strings, to a degree that is dif෽icult or
impossible for most non‐human animal species”

(Fitch, 2014)

Geometric Primitives of Cognition

When it comes to cognitive science, the ෽irst application of informa‐
tion theory to visual perception comes from (Attneave, 1954). He
observed that most of a visual ෽ield is redundant, i.e. many portions
may be hidden and yet successfully recovered, suggesting that the
mental representation might compress the visual information. For
geometric shapes speci෽ically, the earliest theory of programs repre‐
senting geometric shapes comes from Leeuwenberg and colleagues
(E. L. Leeuwenberg, 1969, 1971; Boselie & Leeuwenberg, 1986), who
proposed a formal coding language for 2‐ and 3‐dimensional shapes.
They argue that the mental representation of a shape is as complex
as the smallest program in that language, a property I also defend
in chapter 5. In fact, they already observe that some elements of

1Whether this holds true on curved surfaces or otherwise matters little with re‐
gard to the fact that a simple visual observation on a “base case” will strongly feed
one’s intuition about this axiom.
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their proposed language are quite general, and that they could be
applied to the compression of auditory sequences as well, a property
that was found again in recent work on geometric sequences in the
visual and auditory domain (Amalric et al., 2017; Planton et al., 2021).
In addition to the theoretical claims, they provide some empirical
support for their proposition, but conclude in saying, “[…] for the
time being [the proposed coding procedure] will hardly lend itself to
computer programming.”

Independently, Leyton (Leyton, 1984, 2003) argued that the shapes
that humans generate arise from a set of primitives (points, lines,
planes) together with the repeated mental application of a sequence
of group transformations that duplicate, stretch, rotate, or skew space.
The proposal is mathematically remarkably elegant, and has shown
to be very in෽luential in the design of software for graphical design,
but while that line of work, unlike the one from Leeuwenberg, does
lend itself quite well to computer programming, it remained partially
disconnected from the experimental psychophysical or neurophysio‐
logical literature on shape perception (for exceptions, see Brincat &
Connor, 2004, 2006; Hung et al., 2012)

Kolmogorov Complexity & MDL

A long‐standing cognitive hypothesis is that the brain excels at com‐
pressing information. Indeed, in the presence of structure in stimuli,
either visual or auditory or other, participants’ score improves in a
wide variety of tasks. The ෽irst observation of this phenomenon comes
from (Miller, 1956), who states: “I have fallen into the custom of dis‐
tinguishing between bits of information and chunks of information. […]
The span of immediate memory seems to be almost independent of the
number of bits per chunk, at least over the range that has been examined
to date.” Immediate examples include remembering words, where the
main factor is the number of words and not the number of letters, but
similar observations are pervasive in psychology.

A strong version of this hypothesis states that the brain ෽inds structure
in a richerway than chunking, and relies on generative (programming)
languages: the complexity of a given piece of information is the length
of the shortest program that generates that information. For now, this
is underspeci෽ied, but thiswill becomemore concrete in a few sections.
This hypothesis strongly connects to the predictive coding hypothesis,
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as the ability to predict and generate can be deeply tied to the gener‐
ative language. Furthermore, for probabilistic programing languages,
this class of theories can account for both success and mistakes in hu‐
man behavior, a crucial feature of a ෽itting theory of cognition, and
can entertain the coexistence of several possible mental representa‐
tion with different probabilities.
But a lot hinges on the choice of the programming language, as vari‐
ous propositionswillmakewildly different predictions and it’s unclear
that one can ෽ind a unifying proposition that can account for very dif‐
ferent stimuli (auditory, visual, intuitive physics, etc.)
Thankfully, an entire research domain exists to study a related prob‐
lem: information theory. While most of its applications are far from
psychological considerations, it includes theoretical questions such as
“what is the most information‐ef෽icient way to represent a given set
and its elements”, “how much information do these two representa‐
tions share”. I will introduce two related notion from that ෽ield and
show how they relate. Then, I will relate these propositions back to
cognition.

Kolmogorov Complexity

To characterize the complexity a priori of a given piece of data,
information theory has come up with a useful metric: Kolmogorov
complexity. Consider the following strings of zeros and ones: (i)
“0101010101010101” and (ii) “0110011101101000”. While they have
the same number of zeros and ones, intuitively the ෽irst one has a
“lower complexity” than the second, because it can be expressed
succinctly with an algorithm akin to “repeat ‘01’ 8 times”, while the
second requires an exact description. How can we systematically
characterize this apparent difference? Kolmogorov’s original propo‐
sition (Kolmogorov, 1963) appears convoluted by today’s standards:
for a sequence of 0s and 1s, it ෽inds a set of indices such that the corre‐
sponding extracted subsequence is not random (for some statistical
test), and measures complexity as the number of symbols required to
de෽ine such a set of indices using set operations. The intuition is that
the smallest such set for example (i) is going to be simple to build, and
for (ii) will more or less requires encoding exact positions of 0s (or
1s).
This can be simpli෽ied: considering a programming language, such as
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python, let’s describe our sequences:
def seq1():
print("01"*8)

def seq2():
print("0110011101101000")

The ෽irst program requires 13 characters, while the second requires
25, and in that sense the ෽irst sequence is shorter, or less complex. One
might think that the speci෽ic choice of language matters enormously:
python’s ability to “multiply” strings, for example, is far from common,
and having to unroll this operation with a while loopmight get us over
the length of the sequence, nullifying any compression effect!

The question becomes: is there a single language in which, for any se‐
quence, the program for that sequence is the smallest in that language
across all possible alternative languages? This is almost the case, since
any language expressive enough can be used to implement any other
language. Because of that, we can start from a very small computa‐
tional device, such as a Universal Turingmachine, and use that to mea‐
sure the length of the smallest program for a given output. Maybe an
alternative language would yield a smaller program, but we can imple‐
ment that alternative device for a constant cost in the reference ma‐
chine, and in doing so ensure that the length in the reference machine
is at most the shortest program in the newmachine plus a cost for the
translation between the two machines.

Indeed, consider a new programing language, “python‐prime”,
identical to python in everything except there is a single addi‐
tional instruction “short()” which is semantically equivalent to
print("0110011101101000"). Our sequence (ii) now has a com‐
plexity of 7 in that new language, while leaving the complexity of
(i) untouched. This is puzzling, as it feels like this has made the
“complex” sequence less complex than the other – but the Kolmogorov
complexity doesn’t depend on the choice of language! Now, observe
that both “python” and “python‐prime” can be implemented in a
Turing machine, and that the cost of implementing “python‐prime”
will be greater than the cost of implementing “python”. In fact, it will
be greater almost exactly by the cost of implementing our sequence
(ii), since it needs to de෽ine the “short()” instruction. Therefore, if
relying on a python implementation, in the Turing machine the order
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is again as expected, with (i) having a lower complexity than (ii).
However, these are upper bounds: the Turing machine itself can out‐
put these sequences without having to resort to implementing a com‐
plex language such as python, and a typical machine would do so in
such a way that again, (i) has a lower complexity than (ii). Unfortu‐
nately, it is impossible de devise a function that would output the Kol‐
mogorov complexity of an arbitrary string: it is uncomputable, and
therefore researchers often resort to upper bounds. This limitation
does not hold for the alternative metric introduced below: Minimal
Description Length.

Minimum Description Length

There is no reason to believe that aminimal, universal Turingmachine
is a good candidate for cognitive processes, and therefore Kolmogorov
complexity isn’t the most suited metric to study humans’ idea of com‐
plexity. Instead, it is useful to come up with speci෽ic propositions for
languages for a given domain, typically referred to as DSL for Domain
Speci෽ic Languages, and measure the minimum description length
(MDL): the length of the shortest program, in that particular language,
that computes the desired output.
Traditionally, MDL minimization has been used in statistics for model
selection, and has been described as a mathematical version of
Occam’s razor. The principle is that given a noiseless dataset and
a generative language of models to account for the data, the best
model is the one with the shortest description that generates the
data. In practice, as data is often noisy, the goodness of ෽it needs to
be considered, and the Bayesian Information Criterion (BIC) is used
instead of the MDL.
Interestingly, in the absence of a formal generative language to target,
it is possible to fall back to indirect measure of “minimum description
length” using natural language: this has been successfully done in (Sun
& Firestone, 2022). The downside of this approach is that there is
no reason to think that natural language is the right language to en‐
code these shapes, and therefore operating using “verbal description
length” may be too indirect. Consider for example face recognition:
while humans are very good at discriminating faces, the reason why
two given faces are confusable or not may be hard to describe, as our
ability for facial recognition is mostly cognitively impenetrable – and
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therefore, and introspective “verbal description length” may be too in‐
direct for actual complexity.

Cognition and Program Induction

If mental representations have program‐like properties, then it is cru‐
cial to offer a theory of how programs are inferred: how dowe go from
the sensory inputs to the structured representation? What are good
models or “mental program building”?

In computer science, the sub෽ield tackles this question is that of “Pro‐
gram Induction”: the problem of program induction is the problem of
෽inding a program given, typically, a set of input‐output example pairs.
A ෽irst observation is that this is in principle an impossible problem:
there are arbitrarily many programs that may work, but some will be‐
have differently on new input – in the absence of which the notion of
“correct program” cannot be decided. Given enough examples, the triv‐
ial program that encodes explicitly the input/output pairs becomes
very costly, and MDL can be used as a selection strategy: the goal is
to ෽ind the shortest program that works for the examples given.

A baseline for solving program induction is program enumeration:
recursively enumerate all possible programs in a programming lan‐
guage’s grammar until you hit a program that satis෽ies the constraints.
But this procedure is a poor candidate for a cognitive implementation
of program induction under the MDL hypothesis: if we consider that
the complexity of a certain program is a function of its MDL, then
under that baseline approach the complexity of ϔinding that program
would grow exponentially with its MDL.

However, several methods have been devised to try and keep this com‐
binatorial explosion in check, initiative that stems primarily from the
computer science literature so far. In particular, under the umbrella
term “neuro‐symbolic”models is the idea of bringing the advantages of
neural networks to theproblemof programsynthesis – see (Chaudhuri
et al., 2021) for direct application to program induction, and (Garcez
& Lamb, 2020) for a more general review of unifying neural networks
and symbolic representations.

When it comes to program induction, the unifying idea is to use neural
networks to either (i) directly suggest programs for a given task, which
can then be re෽ined, or (ii) suggests smart enumeration strategies, or
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policies, to make the brute‐force search ef෽icient, the idea featured in
(Ellis et al., 2021) which I use in chapter 5.

The Possibility of Several Internal Languages

Parallel brain networks

Phonemes bind

into syllables and

morphemes

Morphemes bind

into words and

phrases

Phrases bind

into larger phrases and
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Figure 8: Taken from (Dehaene et al., 2022);Main hypotheses of the present proposal. A, Multiple mental
languages, all based on symbols and recursive mental programs. Various domains of human cognition rests
upon several distinct internal languages, each capable of compressing different types of inputs. Those lan‐
guages share the same design principles, but differ in their primitives. Two broad styles may be distinguished:
one based on the capacity to detect repetition with variation, thus appropriate to encode symmetrical pat‐
terns and mathematical structures; and another based on asymmetrical Merge, appropriate to encode the
structures of communicative language at multiple levels (this part of the figure is inspired by a previous pro‐
posal by Pieter Hagoort [19]). Distinct languages emerge once these general instructions are combined with
domain‐specific primitives. B, Multiple parallel cortical circuits. The proposed languages do not rely on a sin‐
gle localized brain area for recursion, but on multiple parallel brain networks with primitives in temporal and
parietal cortex and control structures in prefrontal cortex. For simplicity, only a left hemisphere is shown, but
the postulated brain circuits are generally bilateral. C, interactions within and between languages. The men‐
tal expressions formed in one language become available as primitives for the same or for another language,
thus allowing for the formation of complex recursive and hierarchical thoughts (bottom right).

The observations that humans are exceptional are, of course, not re‐
stricted to the production of geometric shapes. This can be referred
to by using the term “human cognitive singularity” – the word singu‐
larity being used here in its standard meaning (the condition of being
singular) aswell as itsmathematical sense (a point of abrupt change, a
discontinuity in some parameters). Hominization was certainly a sin‐
gularity in biological evolution, so much so that it opened up a new ge‐
ological age: the Anthropocene. Even if evolution works by small con‐
tinuous change (and sometimes it doesn’t (Gould & Eldredge, 1977)),
it led to a drastic cognitive change in humans.
Many accounts of this singularity have been proposed, notably spe‐
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cial competences for analogies (Hofstadter, 2001), theory of mind
(Premack & Woodruff, 1978), teaching (Csibra & Gergely, 2009),
cultural memory (Tomasello, 2000), and natural language (Morgan et
al., 2015). What I argue here is that much simpler tasks will already
yield visible differences, for example the ability to recognize an outlier
amongst squares. I posit that all these competences aremade possible
thanks to emergence of an underlying ability to manipulate discrete
symbols and compose them like a language to build increasingly
complex mental representations. In the domain of geometric shape,
I posit that when most animals perceive the difference between
a square and a circle, they do so with classical visual recognition
mechanisms, but that on top of that humans can encode these shapes
in terms of exact properties. For the discrimination of squares and
rectangles, the two strategies are similar, but the second one makes
comparing a square and a visually close shape that is missing a right
angle much easier, as shown in chapter 1.

This proposal ෽inds its root in a tradition of emphasizing the role of
recursive, nested structures in explaining humans’ cognition, and lan‐
guage in particular (Dehaene et al., 2015; Fitch, 2014; Hauser et al.,
2002; Penn et al., 2008). This ability has sometimes been referred to
as “dendrophilia”, the love for trees, to highlight how cognition seems
to represent any data with tree structures. This hypothesis typically
posited a single, core competence for recursion: see (Dehaene et al.,
2022) for a recent description of a version of this hypothesis that fea‐
tures several languages, possibly sharing some core mechanisms but
differing on others, and involving different brain areas.

Figure 8 summarizes the core hypotheses in favor of several lan‐
guages of thought, fully developed in (Dehaene et al., 2022); however,
in the work presented here I focus on the cognition of geometric
shapes speci෽ically, and only touch considerations about the link to
other languages in chapter 3 when the fMRI data provides evidence
of a dissociation from natural language.

A Primer on Programing Languages

The following subsections are not crucial to any of the chapters in the
work presented after; however, they help map the space of program‐
ming paradigms, and are useful to enrich one’s view about the nature
of the programs over which one could perform program induction.
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Imperative and Functional Style

In imperative styles, programs are procedural, step‐by‐step descrip‐
tion of the actions a machine must take in order to reach a desired
goal. Most commonly used programing languages fall in this category,
perhaps because typical machine code follows a similar pattern. Many
high‐level abstractions can be added, such as functions to avoid code
redundancy, complex looping mechanisms, rich assignments, but ulti‐
mately the program describes a sequence of steps to reach a goal. Con‐
sider the following python program:
radius = 2
pi = 3.14
circumference = 2*pi*radius
area = pi*radius*radius
print(f"For {radius=}, {area=} and {circumference=}")

# Output:
# For radius=2, area=12.56 and circumference=12.56

Approximately, the language parser turns this into an Abstract Syntax
Tree (AST) and then executes the instructions in the order in which
they appear: store a few values in variables, and then compute a new
value using the previous one. The language allows for many different
kinds of abstractions, such as loops, or functions – the following code
computes the radius and area of several circles:
pi = 3.14

def compute_area(radius): return pi*radius*radius

def compute_circumference(radius): return 2*pi*radius

for radius in range(3):
area = compute_area(radius)
circumference = compute_circumference(radius)
print(f"For {radius=}, {area=} and {circumference=}")

# Output:
# For radius=0, area=0.0 and circumference=0.0
# For radius=1, area=3.14 and circumference=6.28
# For radius=2, area=12.56 and circumference=12.56
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Thismodi෽ication introduces indirectness in the execution path, where
the linear, top‐down order is not respected anymore. But ultimately
this program is still describing a sequence of steps to perform to get to
a certain result, and makes use of high‐level primitives to avoid code
repetition. In this style, the state of the program is constantlymodi෽ied
by the code: variables can be changed by functions, the order of exe‐
cution is very rigid and must be anticipated, and the attention of the
programmer is on how to perform a task and how to track change of
what is being performed as the execution ෽lows.

Imperative style is often contrasted with functional style, in which
functions are ෽irst‐class citizens, the state of the program is largely im‐
mutable and instead the focus of the program is on what information
is required, and what transformations this entails, in order to get to a
certain result. Manymodern languages include elements of functional
paradigms, for example the ability to pass function as arguments
to other functions, or to recursively call functions. In a functional
paradigm, for example, it is possible to write the following code:
def map(f, l):

if l == []: return []
else: return [f(l[0]), *map(f, l[1:])]

def pi(): return 3.14

def area(radius): return pi()*radius*radius

def circumference(radius): return 2*pi()*radius

for f in [area, circumference]:
print(map(f, [0, 1, 2]))

# Output:
# [0.0, 3.14, 12.56]
# [0.0, 6.28, 12.56]

While the computation ends up being identical, the focus has shifted a
lot: no variable is ever allocated, and instead at the core of this code is
the notion of function: we can loop over functions (“for f in […]”),
we can give functions as arguments to a function (the ෽irst argument
of map is a function), and we can recursively call functions (map calls
itself to range over the list). While uncommon in python, these con‐
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structions are pervasive in other languages.

Loosely, the imperative style of program is a derivative of the
formalisms introduced with Turing’s machines (Turing, 1936): in‐
structions control the movement of a machine that reads and write
symbols on tapes, each operation giving rise to the subsequent one.
The code describes the movement of the machine. On a somewhat
other end of the spectrum, λ‐calculi, ෽irst described by Church a few
years prior (Church, 1932), can be seen as the original idea for func‐
tional programming paradigms: everything is a function application,
and the task of the programmer is to describe functions. Because
actual computers are sequential in nature, they lend themselves
more naturally to imperative paradigms, but the two models are as
expressive and it is possible to express one in the other and vice versa.

Languages like C, Logo or Python are good examples of languages that
are imperative at heart although they feature some properties of func‐
tional languages. Lisp is a good example of a programming language
that is ෽irst and foremost functional. Functional languages more often
offer high‐level properties such as re෽lection (the ability of a program
to introspect its own structure and behavior) and “metaprogramming”
(the idea that programs themselves are part ofwhat a program canma‐
nipulate, including itself). Such features could be relevant for cognitive
considerations: without such techniques, it is very hard to conceive of
a program such as “a square of squares” that could both (i) somehow
manage to express the embedding and embedded “square” program
identically, incurring a saving, and (ii) generalize this feature across
arbitrary shapes. This consideration is featured in the discussion sec‐
tion of chapter 5 together with considerations about the next type of
programming paradigm, “logic programming.”

Logic Programs

In logic programming paradigms, programs are ordered sets of truth
statement expressed in a formal language akin to predicate logic. The
origin of the paradigm dates back to debates in AI about whether
knowledge should be represented in a declarative or procedural man‐
ner. Historically the ෽irst such language was “planner”, and “prolog”
constitutes an example of modern logic programming language.

Let’s examine an example similar to the one above, written in prolog:
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area(RADIUS,A) :‐ A is RADIUS*RADIUS*3.14.
circumference(RADIUS,C) :‐ C is 2*RADIUS*3.14.

map(_, [], []) :‐ true.
map(F, [X|Xs], [Y|Ys]) :‐ call(F, X, Y), map(F, Xs, Ys).

area(2,R).
map(area, [0, 1, 2], R).
map(circumference, [0, 1, 2], R).

% Output:
% R = 12.56.
% R = [0.0, 3.14, 12.56]
% R = [0.0, 6.28, 12.56]

In this example, we de෽ine in total three logical predicates. The ෽irst
two de෽ine the ways in which two variables are related for that pair to
de෽ine for example an area: the predicate “area(x,y)” is true if x and
y are such that y=x*x*3.14. The map predicate is trickier, we have to
break down the de෽inition into two subcases. Given any function, the
empty list maps onto the empty list, so we say that the predicate “map”
is true whenever its last two arguments are the empty list. Another
case inwhich it is true iswhen its ෽irst argument is a function, the other
two are lists, and two things are true: (i) the ෽irst elements of the two
lists are related by a function application, and (ii) the remainder of the
lists themselves satisfy the map predicate. All other cases of “map” are,
by default, considered false. Then, when we af෽irm that “area(2, R)”
is true, the language has an unde෽ined variable R, but it can tell us that
the only way in which this predicate can be true is if that “R” variable
equal 12.56. Similarly for the list: the only way in which “map(area,
[0, 1, 2], R)” can be true is if R is a list, and recursively the list can
be computed.

This paradigm is much less common in many domains than the imper‐
ative one, but it is used in control system, knowledge representation in
databases, veri෽ication and optimization tasks. The reason I mention
this speci෽ic paradigm is that it allows for very different representa‐
tion of certain objects than the other paradigms. For example, a circle
as represented in an imperative language such as logo will eventually
be a procedure for how to draw a circle: an important property of that
de෽inition is that the center of the circle, for example, is left completely
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out of the equation. On the other hand, prolog will allow us to de෽ine
predicates that de෽ine the circle as a function of its property of equidis‐
tance from the center.
Prolog is, in fact, well suited for turning straightforwardly mathemati‐
cal de෽initions into predicates, and as such has proven useful in work‐
ing with set of geometric objects de෽ined by constraints (Brüderlin,
1985; Franklin et al., 1986). It is not obvious, however, how to inte‐
grate the strength of this language into the framework devised in chap‐
ter 5, and this point is discussed again at the end of that chapter.

Probabilistic Programming Languages

Probabilistic Programming Languages (PPL) are a relatively recent
addition to the programming languages paradigms: the underlying
framework comes from (Solomonoff, 1964), but effective implemen‐
tation started with (Koller et al., 1997). The main idea in PPLs is that
probabilistic sampling is a ෽irst‐class citizen of the language. This
makes execution of programs non‐deterministic, as two executions of
the same program may yield different sampling, and in turn different
output.
The success of PPLs comes from the advances in the ability to perform
backward inference to answer questions like the following: “given
an observation, and a certain number of programs, which program
is most likely to have generated this observation?”. This view has
been particularly useful when conjoined with probabilistic models of
cognition (Chater et al., 2006; Goodman et al., 2012; Tenenbaum et al.,
2011) and the idea of the Bayesian brain: it gives a formal framework
for performing complex Bayesian inference over compositionally
structured representations, and has application that range from
inferring 3D objects from 2D images, inferring internal parameters
of complex models from their output alone, or ෽iguring out what has
happened for a certain physical system to get to where it is.
For example, assumingwe know that a certain linear relation exists be‐
tween two variables which we measure with a ෽ixed amount of noise,
but that every once in a while, the measurements yield a true outlier,
independent from the ground truth. There are statistical methods to
perform linear regressions that are robust to outliers, but PPL can also
be used: we can model the situation with a small program (e.g. at its
core, “f(x) = if random() < threshold then uniform(min, max)
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else a*x + b + gaussian(mu, sd)”) with many underspeci෽ied
variables (in our example, threshold, min, max, a, b, mu and sd). Un‐
der some assumptions about those variables, we can then let modern
reverse inferencemechanisms ෽igure outwhich set of parametersmax‐
imizes the likelihood of getting the output. This example is inspired
from (Cusumano‐Towner et al., 2019); see (Ciccione et al., 2022; Cic‐
cione & Dehaene, 2021) for examples of similar ideas applied to hu‐
mans’ graphicacy abilities.
In fact, in chapter 5 I introduce thework performedwith DreamCoder
to perform program induction on the space of geometric programs.
In that work, we use exact match do determine whether a program
is an acceptable candidate for a shape, mainly for computational
reasons. But we could have made the execution of a program non‐
deterministic, and used repeated execution to approximate an output
probability function, and then replace exact match with likelihood
under the assumption of a given program: this line of research has
been successful for hand‐drawn graphs in (Ellis et al., 2018).

Structure of the chapters

In chapter 1, I show that even the detection of an intruder among
quadrilaterals distinguishes humans from non‐human primates.
Leveraging an intruder task with quadrilateral shapes of different
regularity, I show that humans of diverse education, age and culture
share a sense of geometric complexity: some shapes systematically
make trials easier than others. But baboons lack this sense even after
adequate extensive training: over a sequence of increasingly hard
tasks, we can con෽irm that baboons can understand the intruder task
and generalize across stimuli, but fail to generalize to quadrilateral
shapes. With extensive training on the quadrilateral shapes, their
general performance can rise to the level of 5‐year‐old children, but
display no evidence of the geometric regularity effect detected in
humans.
Arti෽icial neural networks of object recognition ෽it all baboons’ data
well, but explaining humans’ behavior requires using additional sym‐
bolic properties such as the presence of right angles. Symbolic models
of the humans’ behavior generalize to several related tasks, which val‐
idates the robustness of the choice of geometric primitives included
in the model. This sharp dissociation suggests that two strategies are
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available to encode geometric shapes: both humans and non‐human
primates share a perceptual strategy, well captured by models of the
ventral visual pathway, but only human have access to an exact, sym‐
bolic strategy.

In chapter 2, I use neuroimaging techniques to shed light on the
neural implementation of the two strategies put forward in chapter 1.
First, I use a new visual search task to measure the confusion matrix
across the quadrilaterals designed in chapter 1, and model it with
the symbolic model, but not the neural network. I can also show that
a data‐driven decomposition of the complexity matrix coincides with
the symbolic model.
Then, to make a task compatible with both adults and infants, I de‐
sign a purely passive oddball paradigm: participants are shown the
quadrilateral shapes of chapter 1 centered on a screen with random
scaling and rotation, once per second, with the possibility of a deviant
every once in a while. In adults, I can decode the brain signal asso‐
ciated with oddballs, and the performance of the decoder replicates
the geometric regularity effect. Then, using Representational Similar‐
ity Analysis I show that the brain signal ෽irst resembles the neural net‐
workmodel, and then the symbolicmodel, indicating that the twomod‐
els exist in adults despite the fact that their behavior only re෽lects the
symbolic model. Using source reconstruction, I show that the neural
network model corresponds to a bilateral occipital cluster of sources,
while the symbolic model is associated with a wide cluster which in‐
cludes frontal sources and sources in the dorsal pathway.
In two groups of three‐month‐old infants, I try to replicate this exper‐
iment while measuring the EEG activation. Preliminary results are in‐
conclusive as to the intruder detection, the shapes themselves are rep‐
resented differently from one another in a way that is compatible with
the geometric regularity effect.

In chapter 3, I use 3T fMRI in adults and six‐year‐old children tomore
accurately localize the areas associated with geometric shape percep‐
tion across education.
In a category localizer, I ෽ind that passive geometric perception,
when contrasted to other visual objects, activates a network of areas
previously associated with non‐linguistic high‐level mathematics.
Conversely, geometric shapes are under‐represented compared to
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the other categories in the ventral pathway. This result holds for both
age groups, indicating that the core mechanisms at play in geometric
shape are already present in six‐year‐old children.
Then, participants performed a variation of the intruder test from
chapter 1 inside the fMRI. Both age groups performed a simple ver‐
sion of the task, and additionally adults performed a hard version of
the task. The behavior from inside the scanner replicates our previous
experiments, including an overall ranking of performance across age
groups and dif෽iculty. Data from adults in the easy condition yielded
clusters with increased activity as a function of the complexity of the
shape, and Representational Similarity Analysis detected signi෽icant
clusters associated with the neural network model, the symbolic
model, and both models.

In chapter 4, I focus on a single geometric property, right angles, and
compare the behavior of educated adults and baboons in a delayed
match‐to‐sample task involving various angles and distractors.
In trying to replicate results on the categorical perception of right
angles in adults, I put forward the fact that several properties are
required for right angles to perform differently than neighboring
angles: (i) the stimuli need to be displayed long enough, and (ii) no
other low‐level property can be used to perform the task. Both results
coincide with the idea that symbolic properties require attention as
put forward in chapter 1.
I also present early data collected in baboons; however, data collected
so far only correspond to a condition where humans do not display
categorical perception of geometric shape. We replicate this result in
baboons, but this is inconclusive about the cases in which humans per‐
ceive right angles categorically.

In chapter 5, I go beyond a small set of highly controlled quadrilater‐
als and I set to try to account for all geometric shapes produced by hu‐
mans. To do so, I make a concrete proposition for a generative mental
language of geometric shapes inspired by attested human geometric
productions.
I fully develop the argument that perceiving a shapemeans ෽inding the
shortest program in this language that generates the shape. And for
the language I propose, I show that program induction is in principle
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a tractable problem: for that I use the DreamCoder algorithm I helped
implement. Then, I use this language to generate shapes of increas‐
ingly high complexity and show that humans’ performance in a match‐
to‐sample task for a shape correlates with the length of its shortest
program, above and beyond many other perceptual features.
To decouple this result from the exact language proposition, I also de‐
rive more general additive rules that any alternative languages must
obey. In particular, I show that repetition and embedding are essential
to capture the compositional nature of geometric shape complexity.
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1 Sensitivity to geometric shape regularity in humans and baboons

Chapter 1

Sensitivity to geometric shape regularity in
humans and baboons: A putative signature of
human singularity

Abstract

Among primates, humans are special in their ability to create
and manipulate highly elaborate structures of language, mathe‐
matics, andmusic. Herewe show that this sensitivity to abstract
structure is already present in a much simpler domain: the vi‐
sual perception of regular geometric shapes such as squares,
rectangles, and parallelograms. We asked human subjects to
detect an intruder shape among six quadrilaterals. Although
the intruder was always de෽ined by an identical amount of dis‐
placement of a single vertex, the results revealed a geometric
regularity effect: detection was considerably easier when either
the base shape or the intruder was a regular ෽igure compris‐
ing right angles, parallelism, or symmetry rather than a more
irregular shape. This effect was replicated in several tasks and
in all human populations tested, including uneducated Himba
adults and French kindergartners. Baboons, however, showed
no such geometric regularity effect, even after extensive train‐
ing. Baboon behavior was captured by convolutional neural net‐
works (CNNs), but neither CNNs nor a variational autoencoder
captured the human geometric regularity effect. However, a
symbolic model, based on exact properties of Euclidean geome‐
try, closely ෽itted human behavior. Our results indicate that the
human propensity for symbolic abstraction permeates even el‐
ementary shape perception. They suggest a putative signature
of human singularity and provide a challenge for nonsymbolic
models of human shape perception.
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1.1. INTRODUCTION

[The universe] is written in mathematical language, and its
characters are triangles, circles and other geometric ෽igures,
without which it is impossible to humanly understand a
word.

The Assayer, Galileo Galilei

This chapter corresponds to an article published in PNAS under the fol‐
lowing reference: Sablé‐Meyer, M., Fagot, J., Caparos, S., Kerkoerle, T.
van, Amalric, M., & Dehaene, S. (2021). Sensitivity to geometric shape
regularity in humans and baboons: A putative signature of human sin‐
gularity. Proceedings of the National Academy of Sciences, 118(16).
https://doi.org/10.1073/pnas.2023123118

1.1 Introduction

Among primates, humans are unique in their ability to develop for‐
mal symbolic systems that capture regularities in the external world,
such as the language of mathematics. A great variety of non‐exclusive
hypotheses have been proposed to account for human singularity, in‐
cluding the emergence of evolved mechanisms for social competence
(Herrmann et al., 2007), pedagogy (Csibra & Gergely, 2009), natural
language (Berwick & Chomsky, 2016; Hauser et al., 2002), or recur‐
sive structures across multiple domains such as language, music and
mathematics (Dehaene et al., 2015; Fitch, 2014; Hauser & Watumull,
2017; Penn et al., 2008). To explore these hypotheses, experimental
paradigms that afford a direct comparison of human and non‐human
primate behavior using the exact samemethods are the most informa‐
tive (Beckers et al., 2016; Ferrigno et al., 2020; Malassis et al., 2020;
Smith et al., 2004; Wang et al., 2015; Yang, 2013). Here, we present
a novel paradigm to investigate the differences between humans and
baboons in the domain of geometry, and more speci෽ically, the visual
perception of quadrilaterals such a square, a rectangle or a parallelo‐
gram. We show that all humans, regardless of culture or education, are
sensitive to the presence of geometric regularities such as right angles,
parallelism or symmetry, and perform very differently from baboons
in an elementary visual perception task.
Prehistorical records suggest that the appreciation of regular geo‐
metric shapes is as ancient as humanity itself. Parallel lines, circles,
squares and spirals are omnipresent in human art and architecture.
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1 Sensitivity to geometric shape regularity in humans and baboons

The earliest engravings attributed to Homo sapiens, consisting of a
triangular mesh of parallel lines, are estimated to be ~73000 years
old (Henshilwood et al., 2018). Even Homo Erectus already drew
abstract patterns ~540,000 years ago (J. C. Joordens et al., 2015).
Paleoanthropologists do not question the human origins of such draw‐
ings because, when given the opportunity to draw, other non‐human
primates never produce structured ෽igures (Saito et al., 2014). By
contrast, the diversity and abstraction of young children’s drawings
are striking (Goodenough, 1926; Long et al., 2019). Prior research
has established that even kindergartners and adults with no formal
education from the Amazon already possess sophisticated intuitions
for geometry (Dehaene et al., 2006; Izard et al., 2011) forming an
intuitive mathematical “language of thought” (Amalric et al., 2017).
Those prior results suggest, but do not prove, that humans possess
a more symbolic level of understanding of the abstract properties
of geometry at the perception level than other primates. Here, our
goal was to design a simple empirical test capable of probing this
hypothesis.

We reasoned that if humans are spontaneously attuned to the major
properties of Euclidean geometry (lines, length, parallelism, perpen‐
dicularity, symmetry) and their combinations, then they might exhibit
a geometric regularity effect, with a better and faster perception of reg‐
ular shapes, such as a square, than of irregular ones. This hypothesis is
in linewith a long tradition in the psychology of perception, pioneered
by Wundt, Tichener, then the Gestaltists (Gombrich, 1994), Leeuwen‐
berg’s visual grammar (Boselie & Leeuwenberg, 1986; E. L. Leeuwen‐
berg, 1971) and Leyton’s generative theory of shape (Leyton, 2003),
which posits that the shapes that elicit the most compact internal rep‐
resentations also tend to be judged as most regular or elegant. Sev‐
eral previous experiments, both within and outside the domain of ge‐
ometry, have shown that whenever regularities are present, humans
use them to compress information in working memory and achieve a
smaller “minimum description length”, thus facilitating memorization,
anticipation andoutlier detection (Amalric et al., 2017; Feldman, 2000;
Mathy & Feldman, 2012; Planton et al., 2020; Shepard et al., 1961).

Crucially, the domain of visual shape perception is simple enough to
probe the sensitivity of human and non‐human animals to the same
mathematical properties. Indeed, a previous study demonstrated that
humans could perceive visual patterns with nested symmetries, while
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1.2. RESULTS

pigeons did not (Westphal‐Fitch et al., 2012). Here, we opted for an
even simpler intruder test, where a participant must simply ෽ind the
outlier shape within a set of six, and which has been previously used
to explore human intuitions of geometry (Dehaene et al., 2006; Dillon
et al., 2019). We used it to test a large number of humans and baboons
with the very same stimuli.

1.2 Results

1.2.1 Design of the Geometric Intruder Task

We focused on four geometrical properties of polygons: the presence
of parallel lines, equal sides, equal angles, and right angles. Ourhypoth‐
esiswas that the perceived geometric regularity of a shapewould bedi‐
rectly related to its numberof geometrical properties. On this basis, we
selected 11 quadrilaterals ranging from highest regularity (a square)
to full irregularity (an arbitrary quadrilateral devoid of any of these
properties). The 11 shapes, ordered by predicted regularity, are de‐
picted in Figure 1.1A and described in Table 1.2. For each such refer‐
ence shape, four deviant versionswere generatedby changing theposi‐
tion of the bottom‐right vertex by a constant distance, either along the
bottom side or along a circle centered on the bottom‐left vertex (thus
violating either distance or parallelism). All deviants departed from
their reference shape by the same amount, and all 11 reference shapes
werematched for average distances between vertices (see Supplemen‐
tary Online Materials). On each trial of the intruder task, we selected
one of the 11 possible reference shapes and presented ෽ive instances
of it, varying in scale and orientation (e.g. 5 rectangles), together with
a single deviant (in this case, a non‐rectangle with the bottom‐right
vertex displaced). The location of this outlier was randomized, and six
levels of shape rotation and shape scale were pseudo‐randomly dis‐
tributed among the six shapes. The participants’ task was to click on
the outlier shape, as fast and accurately as possible (Figure 1.1B).

1.2.2 Results in Humans

Intruder Task in Educated Adults

In experiment 1, with N = 605 French adults, we observed that error
rates in the intruder task varied dramaticallywith the reference shape,
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Figure 1.1: A, stimuli. Weselected 11 quadrilaterals, here ordered according to their number of geometrical
regularities (parallelism, equal sides, equal angles or right angles). For each quadrilateral, four deviants were
generated by moving the bottom right corner by a fixed distance, thus shortening, lengthening or rotating the
bottom side. B, examples of intruder‐task displays. Left: circular display used in experiment 1. Participants
had to tap the intruder. Center: Rectangular display used in experiment 2 and following. In the canonical
presentation, five shapes exemplified a fixed quadrilateral, with variations in size and orientation, and the
remaining shape was a deviant. In the swapped presentation, those two shapes were swapped. In either
case, participants had to tap the intruder. Right: sequential presentation, unfolding from top to bottom and
from left to right over the span of 1.8 seconds. Participants had to answer “correct” for properly placed dots
(in green), and “incorrect” for deviant dots (example in red). C, geometric regularity effect in experiment
1: error rate varied massively with shape regularity in French adults. Shapes are ordered by performance,
and each is labeled with a color which is consistent across graphs, including panel A. Error bars represent the
standard error pooled over all participants – in this figure it is smaller than dot size. D‐H: Replications of the
geometric regularity effect with: D, swapped versus canonical trials in French adults; E, subjective judgments
of shape complexity on a 1‐100 scale; F, Sequential presentation of the four corners; G, French kindergartners;
H, uneducated Himba adults from rural Namibia.
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1.2. RESULTS

from 2% to 40% (Figure 1.1C; Univariate Type III Repeated‐Measures
ANOVA: F(10, 6040) = 292.88, p < 10‐15; explained variance evaluated
by the generalized eta squared: η²G= .27). Average performance was
well predicted by the total number of geometrical regularities (linear
regression on 11 points: r²=.64, p=.0031) and showed a consistent,
though imperfect, ordering from regular to irregular (Figure 1.1C).
Since the regularity of symmetrical ෽igures, such as the iso‐trapezoid,
was underestimated by our theoretical measure, in subsequent exper‐
iments we use the error rate from experiment 2 as an empirical mea‐
sure of regularity.

By contrast to the major effect of shape, the size, rotation and position
of the outlier had signi෽icant but only minor effects (size: F(5, 3020)
= 4.46, p = .0005, η²G=.005; rotation: F(5, 3020) = 21.19, p < .0001,
η²G=.021; position: F(5, 3020) = 4.96, p = .0001, η²G=.005). Response
times were tightly correlated with error rates (linear regression: r² =
.92, p< .0001) and therefore also exhibited a large geometric regularity
effect (Figure 1.2).

In experiment 1, the intruder was always a deviant shape, and was
therefore more irregular than the reference shape. Thus, participants
could have responded by selecting the most irregular among the six
shapes on display. To avoid this confound, in experiment 2 and all
subsequent experiments, half of the displays were canonical (෽ive in‐
stances of one of the 11 reference shapes, plus a single deviant) and
half were swapped (෽ive deviants, identical up to a rotation or scale
change, plus a single reference shape; see examples in Figure 1.1B).
As previously, participants were simply asked to click on the shape
that differed from the others. In a new group of N = 117 French adults,
the geometric regularity effect was replicated (differences between
shapes: F(10, 1160) = 70.96, p < 10‐15, η²G=.25; correlation with ex‐
periment 1: r² = .97; p < 10‐7; Figure 1.1D), while size, position and
rotationeffects againhadeither insigni෽icant or very small effects (size:
F(5, 580)=2.16, p=.056, η²G=.008 ; rotation: F(5, 580)=9.66, p < .0001,
η²G=.031; position: F(5,580)=2.26, p=.047, η²G=.008). Response times
also yielded a large geometric regularity effect (correlation with error
rate: r²=.95, p<.00001). Error rates were strongly correlated across
the two display types (r² = .84; p < .0001; Figure 1.1D).
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Figure 1.2: Correlation between averaged participants’ error rate (x axis) and response times inmilliseconds
(y axis) across all 11 shapes for each test group. From left to right, from top to bottom: French Adults exp. 1,
then exp. 2, then kindergartners and 1st graders, then Himbas, and finally baboons.
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Subjective Ratings of Complexity

Three additional experiments investigated the origins of the geomet‐
ric regularity effect. First, we asked whether geometric regularity was
consciously accessible and could therefore be directly reported using
subjective ratings. N = 27 French adults rated the subjective complex‐
ity and N = 21 rated the subjective regularity of each reference shape
on a 1‐100 scale. Both subjective ratings correlated tightly with er‐
ror rates in the intruder task (complexity r²=.88 and regularity r²=.76;
r²=.84 after aggregating the two conditions by averaging complexity
and 1 – regularity; all p<.0001; Figure 1.1E). Since what character‐
izes complex stimuli at the early visual stages of object recognition is
largely thought to be inaccessible to introspection (Pylyshyn, 1999),
the ෽inding that humans have correct intuitions that some geometric
shapes are simpler than others suggesting that this effect arises at a
level of representation beyond early vision.

Visual Search

We further tested this idea by probing whether the search for geomet‐
ric regularity engages parallel (“pop‐out”) or serial processes. N = 11
French adults engaged in a classic task of visual search for an outlier in
arrays of 6, 12 or 24 shapes. Response times showed that search was
always serial, for all 11 shapes, yet with a slope and an error rate that
again correlated linearly with geometric regularity (p<.0001, r²=0.98;
Figure 1.3; detailed analysis of the effects of number of items and item
presence provided in Supplementary Materials). This ෽inding shows
that the regularity effect does not arise from an early pre‐attentive
pop‐out, even for the simplest shapes such as square or rectangle.
Rather, geometric shape perception involves an attention‐dependent
stage whose speed increases with geometric regularity.

Sequential Presentation of Shapes

As a further test of the perceptual stage atwhich the geometric regular‐
ity effect arises, we asked whether this effect would still be present if
the shapes could not be perceived in one glance, but had to bementally
reconstructed for a sequential display of their vertices. N = 16 French
adults participated in an experiment in which the shapes were broken
down into a sequence of four dots, one for each vertex location, in a sys‐
tematic order. By having the sequence unfold over a time span of 1.8
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Figure 1.3: Visual search paradigm. A, Examples of visual search displays. In the visual search task, 6, 12
or 24 shapes were randomly positioned inside a circle, and participant had to decide whether all the shapes
were identical, irrespective of rotation and scaling, or whether there was one that differed from the others.
They gave their binary present/absent response by pressing one of two possible keys on the keyboard. B,
Error rates in visual search task. Errors rates increased with both the number of shapes and their complexity
(geometric irregularity). The latter effect correlated tightly with the average error rate in the intruder task. C,
Search times. Left: Slope of the visual search as a function of the number of displayed items, the presence
or absence of an outlier, and the shape. Right: Correlation between the slope of the visual search on present
trials and the error rates of the intruder task (exp. 2).
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s, thus largely exceeding the time window for integration within the
ventral visual recognition system (Forget et al., 2009; Greene, 2016),
our goal was to prevent classical bottom‐up shape recognition mecha‐
nisms, yet still allow subjects to grasp the geometric relationships be‐
tween the 4 vertices. The experiment was run in small blocks, each
with reference shapes. In the ෽irst six trials of a given block, the four
dots always traced a ෽ixed quadrilateral (e.g. rectangle), with varia‐
tions in size and orientation. Then, on each subsequent trial, the ෽irst 3
dots continued to trace the same quadrilateral (again with variations
in size and orientation), but on half of the trials the fourth dot was
displaced to one of the four possible deviants shown in Figure 1.1A.
Participants were asked to indicate if the last dot was correctly or in‐
correctly located. Even under this sequential condition, the geometric
regularity effect was replicated: the error rate still varied dramatically
across shapes (F(8, 120) = 10.1, p<10‐9, η²G=.16) and the effect corre‐
lated with the geometric regularity effect observed for static shapes
(r² = .56; p = .02; Figure 1.1F). Thus, the effect arises from a level of
representation where geometric properties can be ascertained even
when they are not simultaneously present in the stimulus.

Probing the Influence of Education: Himbas and Young Children

We next investigated the dependence of the effect on age, education
and culture. One possibility is that the effect arises from formal ed‐
ucation in mathematics, for instance because regular shapes are also
familiar, nameable, and taught at school. To address this concern, we
turned to human populations with little or no formal schooling. First,
we tested French kindergartners (N=28; mean age 5 years 4 months;
range 4:11 to 5:10. To shorten the duration of the experiment, children
were tested solely with canonical displays. N=156 1st graders were
also tested, see supplementary materials and SI Appendix Figure 1.4
for detailed results). Second, even since those Western children could
have been introducedwith shapenames, we also tested22uneducated
Himba adults, a pastoral people of northern Namibia whose language
contains no words for geometric shapes, receive little or no formal ed‐
ucation, and who, unlike French subjects, do not live in a carpentered
world (Davidoff et al., 2002).

In both populations, the geometric regularity effect was replicated
(Figure 1.1G and Figure 1.1H; see Figure 1.5 for a systematic
investigation of the signi෽icance and effect size of each predictor on
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Figure 1.4: A, Kindergartner study and comparison with adults. Left: Main effect of quadrilaterals on
performance in the intruder task. Right: Correlation between French kindergartners and French adults. Colors
match the left plot and indicate the shape. B, 1st graders study and comparison with adults. C, Comparison
between kindergartners and 1st graders. The dotted line indicates a slope of 1 while the solid line indicates
the best fit (slope = .91, SE = .06). D, Geometric regularity effects after exclusion of square and rectangle.
Although the data from kindergartners and 1st graders suggested that the square and rectangle shapes were
outliers, their performance continued to exhibit a geometric regularity effect and remained correlated with
that of French adults even when square and rectangle shapes were excluded from the analysis. In baboons,
by contrast, the correlation remained nonsignificant.
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each population). In kindergartners, errors rates varied even more
dramatically than in educated French adults across the 11 shapes.
They remained below 20% for the square and rectangle, ~50% for
the iso‐trapezoid, and continued to climb up to 60‐70% for more
irregular quadrilaterals. The correlation of children and French
adult performance was strong and remained signi෽icant even when
excluding the two simplest shapes (square and rectangle; see SI
Appendix Figure 1.4D). Similarly, the performance of Himba adults
varied with geometrical regularity and was correlated with that of
both French adults (r²=0.55) and French kindergartners (r²=0.59).
Both ෽indings converge with previous work (Amalric et al., 2017;
Dehaene et al., 2006) to suggest that the geometric regularity effect
re෽lects a universal intuition of geometry present in all humans and
largely independent of formal knowledge, language, schooling, and
environment.

F , p , η²G p η²G F p η²G F p η²G F p η²G F p η²G p r²

French Adults 1 F(10, 6040) = 292.88 <0.01 0.3 F(5, 3020) = 4.96 <0.01 <0.01 F(3, 1812) = 114.09 <0.01 0.1 F(5, 3020) = 4.46 <0.01 <0.01 F(5, 3020) = 21.19 <0.01 0 <0.01 0.537

French Adults 2 F(10, 1160) = 70.96 <0.01 0.3 F(5, 580) = 2.26 0.05 <0.01 F(3, 348) = 53.60 <0.01 0.1 F(5, 580) = 2.16 0.06 <0.01 F(5, 580) = 9.66 <0.01 0 <0.01 0.591

Himbas F(10, 210) = 19.61 <0.01 0.4 F(5, 105) = 0.32 0.9 <0.01 F(3, 63) = 10.99 <0.01 0.1 F(5, 105) = 2.07 0.07 0.04 F(5, 105) = 1.77 0.13 0 <0.01 0.351

Preschoolers F(10, 270) = 14.90 <0.01 0.3 F(5, 135) = 1.92 0.1 0.04 F(3, 81) = 12.03 <0.01 0.2 F(5, 130) = 2.47 0.04 0.05 F(5, 135) = 0.75 0.59 0 <0.01 0.463

1st graders F(10, 1550) = 76.93 <0.01 0.2 F(5, 775) = 3.51 <0.01 0.01 F(3, 465) = 53.38 <0.01 0.1 F(5, 775) = 9.60 <0.01 0.03 F(5, 775) = 8.38 <0.01 0 <0.01 0.514

baboons F(10, 100) = 24.68 <0.01 0.4 F(5, 50) = 3.50 <0.01 0.08 F(3, 30) = 102.97 <0.01 0.6 F(5, 50) = 2.98 0.02 0.05 F(5, 50) = 44.82 <0.01 0.4 0.12 0.0568

Symbolic ModelShape Outlier Pos Outlier Type Outlier Scale Outlier Rotation

Figure 1.5: For each tested population, we ran five separate ANOVAs to measure the significance and effect
size on performance of five different aspects of the stimuli: geometric shape (11 shapes), position of the
outlier (6 positions), type of outlier (4 types of deviants, as defined in Figure 1.1), scale of the outlier (6 scale
changes), and rotation of the outlier (6 angles). The table reports, for each ANOVA, the p‐value and generalized
eta‐squared value (proportion of variance accounted for). On all human populations, there was a main effect
of the shape (i.e. the geometric regularity effect), and a significant but smaller effect of outlier type. Other
predictors were either not significant or had extremely small effect size. By contrast, three variables impact
baboons’ behavior: the shape, the type of outlier, and the rotation of the outlier. The shape effect (different
from the human geometric regularity effect) is described in the main text. As for the outlier type and rotation
effects, baboons fared better on trials where the deviants were smaller due to an inward displacement of the
bottom right vertex, and fared better when the outlier was maximally rotated in one direction or the other.

1.2.3 Can Baboon Pass the Intruder Test?

Next, we investigated whether the effect was also present in a non‐
human primate species, the guinea baboon (Papio papio). Baboons’
visual system is largely similar to that of humans, and they perform
similarly in some shape recognition tasks (e.g. ref 25). We capitalized
on a large facility where baboons can freely access testing booths with
touch screens (Fagot & Bonté, 2010). Twenty‐six baboons received
individualized training on the intruder task, using a great variety of
images and textures (Figure 1.6). Complete detail of each subject’s
learning history and performance is provided inFigure 1.7 and in Sup‐
plementary Materials. A full data set was obtained from 20 animals
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Figure 1.6: The geometric regularity effect is absent in baboons. A, training procedure. Each animal was
trained for thousands of trials on the intruder task, firstwith a small number of fixed images (n=3, training stage
1), then with a larger number of images (up to 6, training stage 5) and with variations in size and orientation.
Mastery of the taskwas verified through twogeneralization tests using novel images. Eachbaboonmoved from
one stage to the next only when the error rate fell below 20%. B, Summary of baboon training performance
(first and last blocks of 88 trials each). Each color represents one baboon. Most animals attained criterion on
the 10 pairs of shapes used for training (top) and successfully generalized to 10 new pairs of shapes (bottom
left) and to 3 pairs of easily distinguishable polygons (bottom right; chance = 83.3% errors with 6 shapes). C,
performance in the geometric intruder task. Left: average performance for each geometric shape at three
stages: the first 33 test blocks, the middle 33 test blocks, and the last 33 test blocks. Each block contained 88
trials, and baboons took at most 99 blocks. Right: correlation between the average error rate in baboons and
in French adults taking the same test (experiment 2).
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Figure 1.7: Each graph shows the average error rate as a function of the number of trials that the animal
took, split according to the different phases of the training and testing (as defined in Figure 1.6). Each line
corresponds to a baboon: the first 20 lines show all animals that produced data in the final test of geometric
figures, and the last 6 rows show all animals that dropped at various stages of training. The x‐axis is a loga‐
rithmic axis (Log10), so that generalization blocks (which typically contain far fewer trials) can be seen. When
a plot is missing, it means that the baboon did not take that particular block. Baboons with names in bold
pursued the task until after block 81 and were therefore included in the main analyses.
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1 Sensitivity to geometric shape regularity in humans and baboons

who completed (1) an initial series of training stages on the intruder
task with 10 non‐geometric image pairs, progressively increasing in
the number of available choices (Figure 1.6A; 20 animals reached cri‐
terion; average of 5200 trials to criterion, range 1000 – 14500); (2)
a ෽irst generalization to 10 novel non‐geometric image pairs, indicat‐
ing that they understood the intruder task (only tested in 18 animals;
average = 272 trials, range 100 – 700); (3) a second generalization
to black‐and‐white geometric shapes, where a simple non‐geometric
parameter suf෽iced to respond (e.g. pick a small triangle amidst large
pentagons; average = 220 trials, range 100 – 600); and ෽inally (4) gen‐
eralization and further retraining with the complete set of quadrilat‐
erals identical to human participants (average 6305 trials, range 704
– 8712).
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Figure 1.8: Cross‐correlationmatrix of the performance of each individual baboonover the course of testing,
across 44 data points (11 shapes X 4 deviant types).

Twenty of the 26 animals showed a clear understanding of the in‐
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truder task, because following trainingwith 20 non‐geometric images,
they showed immediate ෽irst‐trial generalization to new such images
and/or to easily distinguishable polygons (Figure 1.6B). However,
when presented with the 11 quadrilaterals, baboons’ performance
collapsed, suggesting that they found all of them equally similar
(Figure 1.6C). Their performance was close to chance on the ෽irst test
block (76.2% errors, SE=1%; chance = 83.3%) and slowly progressed
on subsequent days. 11 animals continued performing the geomet‐
rical task for 8000 trials or more, eventually reaching 53% errors
(signi෽icant deviation [SD]=6.7%) on blocks 81 to 99. Note that this
performance was comparable to that of the kindergartners and 1st
graders, who achieved respectively 51% (SD=14%) and 48% errors
(SD=16%). Yet even in the latter blocks, for the 11 primates who
reached that stage and had therefore received substantial training,
no geometric regularity effect was observed. Although error rates
differed across the 11 shapes (F(10, 100) = 24.68, p<10‐14, .0001,
η²G=.44), with a consistent ordering across baboons (Figure 1.8) and
a tight correlation with their RT (See SI Appendix, Figure 1.2), they
correlated weakly and non‐signi෽icantly with the geometric regularity
effect found in human populations (Figure 1.6C). Rather, baboon
performance was impacted, at least in part, by visual properties
that had little to no impact on human participants, such as outlier
rotation and outlier type (see Figure 1.5). Thus, baboons performed
poorly with quadrilaterals and were insensitive to their geometric
regularities.

1.2.4 Models of Human and Baboon Performance.

To shed light on the dissociated performance of humans and baboons,
we contrasted two classes of models of the intruder task (Figure 1.9).
The ෽irst class assumes that quadrilaterals are processed by standard
image recognitionmechanisms in the ventral visual pathway,while the
second assumes an additional level of discrete, symbolic processing of
non‐accidental geometrical properties.
We modeled the ventral visual pathway using CORnet, one of the
top‐scoring convolutional neural networks (CNN) on brain‐score.org,
a platform that compares computational models with behavioral
and neural observations (Schrimpf et al., 2018) (other CNNs gave
identical results; see Supplementary Online Materials). This model
was pre‐trained to label photographs on ImageNet, a large set of
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Figure 1.9: A double dissociation in geometric shape perception. A, symbolic model. Each shape is coded
by a vector of discrete geometric properties (equal angles, parallel sides, equal lengths and right angles; each
relationship is assumed to be detected with a tolerance of 12.5%). The distance between the standard and
outlier vectors is then used as a predictor of the ease of intruder detection. B, neural network model (panel
modified from ref. (Kubilius et al., 2019), with permission from the authors). CORnet, a model of the ventral
visual pathway for image recognition, is used to encode each of the six shapes of a given trial by an activation
vector in inferotemporal cortex (IT). The shape whose vector is the most distant (ℒ2‐norm) from the average
of the five others, is taken as the network’s intruder response. Predicted error rate is obtained by averaging
across hundreds of trials. C, Simple correlation matrix across shapes between the performance of individual
baboons (names in capitals, top rows), the predictions of the two models (middle rows), and various human
groups (bottom rows). Color indicates the correlation coefficient r. D, Standardized regression weights (beta)
in a multiple regression of the data from various human and non‐human primate groups across 44 data points
(11 shapes X 4 outlier types) using the symbolic and neural‐network models as predictors. Stars indicate sig‐
nificance level (•, p<.05; *, p<.01; **, p<.001; ***, p<.0001).
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images featuring natural and man‐made items. To determine if this
model could successfully simulate the outlier task, we fed the network,
without retraining, with each of the six images actually presented
to the participants on a given trial, collected the corresponding
activation vectors in each CNN layer, and de෽ined as the intruder the
image whose vector differed most from the mean of the others. When
averaging across trials, this process yielded a predicted error rate for
each shape, separately for each layer in the model.

0.0

0.2

0.4

0.6

0 10 20 30

r² of the best fit
on French adults

Language tolerance
parameter

Figure 1.10: Correlation (R²) between the behavioral data of Experiment 2 (with French adults) and the
predictions of the symbolic model, as a function of the tolerance threshold for accepting two sides or two
angles as approximately equal. Any tolerance threshold between ~3% and ~20% yielded roughly similar fit,
indicating that the model is robust to the exact choice of its only free parameter.

A second class of model, capitalizing on the prior demonstration of
categorical perception for parallels and perpendicularity (Dillon et al.,
2019), assumes that quadrilaterals arementally encoded as a symbolic
list of discrete geometric properties. For each shape, the model loops
over all pairs of sides and angles and generates a vector of 0’s and 1’s
for the presence or absence of equal angles, equal sides, parallelism,
and right angles (with a tolerance ෽itted to 12.5%, although this pa‐
rameter had little impact, See SI Appendix Figure 1.10). The dif෽iculty
of spotting the intruder is then predicted to be inversely related to the
ℒ1 distance (Manhattan distance) between the symbolic vectors cod‐
ing for the reference and deviant shapes.
Figure 1.9C shows the matrix of correlation, over the 11 shapes, be‐
tween the errors rates for each human population, each of the 11 well‐
trained baboons, and the predictions of the two models. Two squares
are apparent. First, all baboons are intercorrelated, and their perfor‐
mance is well predicted by the last layer of the CNN model, putatively
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1 Sensitivity to geometric shape regularity in humans and baboons

corresponding to ventral inferior temporal cortex (IT; mean across an‐
imals: r = .81, SE = .03). However, the CNN model is a poor predic‐
tor of human performance (mean across human groups: r = .48, SE =
.10; the two distributions are signi෽icantly different: t‐test, p = .024)
and reaches signi෽icance only for Himbas and kindergartners (p = .005
and p = .048 respectively). Second, conversely, all human groups are
well predicted by the symbolic model (mean r=.84, SE=.05, see Table
1.1 for a breakdown of the effect of each symbolic property), but that
model is a poor predictor of baboon behavior (mean r = .44, SE = .04;
the two distributions are signi෽icantly different: t‐test, p < .001).

Table 1.1: To quantify the contribution of each geometric property to our symbolic
model, we ran a mixed‐effect linear regression on the data from our French adult ex‐
periment 2. The model predicted the error rate of participants on 11 shapes, given the
presence or absence of exact property in each shape, with participants as a random
effect. The intercept corresponds to the predicted error rate for a shape without any
regularity (44%), and each additional property significantly improves the prediction of
the performance of participants. Equal sides had the greatest impact (13% gain overall),
followed by parallelism (10%), symmetry (7%), and finally right angles (3%).

estimate std.error statistic df p.value

Intercept 0.44 0.01 29.54 332.51 <10e‐8
right‐angle ‐0.03 0.01 ‐3.33 1166 <.001
parallels ‐0.1 0.01 ‐11.09 1166 <10e‐8
symmetry ‐0.07 0.01 ‐5.94 1166 <10e‐8
equal‐sides ‐0.13 0.02 ‐8.7 1166 <10e‐8

This double dissociation was con෽irmed by a two‐parameter multiple
regression where the predictions of the two models were put in com‐
petition to predict 44 data points (11 shapes x 4 deviants) per popula‐
tion (Figure 1.9D). The three experiments with French adults who re‐
ceived formal education were almost exclusively captured by the sym‐
bolic regressor, and each baboon’s data by the neural‐network regres‐
sor. Interestingly, uneducated populations (Himba adults and French
kindergartners) showed a signi෽icant contribution of both models.
Thus, the modelling suggests that two strategies are available to solve
the intruder task and may coexist in humans (Davidoff et al., 2002;
Rosch, 1973): an early visual capacity, shared with other non‐human
primates, to recognize shapes in the ventral visual pathway and use
this code to detect a salient deviation in shape; and a higher‐level uni‐
versal human capacity to grasp abstract geometric properties. The for‐
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Figure 1.11: Each row displays the prediction from a given model of visual perception, with the predicted
error rates across shapes (left; displayed over the data from baboons in dark gray and humans in light gray)
and the correlationwith the aggregate of baboons’ data after the 80th trial (right). The first four rows show the
prediction of each major layer of CorNet in order (V1, V4, and IT used throughout this document), followed
by a model that picks the shape with area most distant from the average of the other shape’s area, and an
equivalent model with the perimeter. All reach significant levels at the p < .05 levels except the perimeter, and
the R² increase with the layers in CorNet.
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mer may exploit a variety of early and late visual cues, since further
analysis of the CNN’s performance showed some degree of predictabil‐
ity of the baboons’ behavior by the V1 layer already, or by the surface
area of the stimuli (See SI Appendix, Figure 1.11). The abstract strat‐
egy, however, appears out of reach of such simple perceptual mod‐
els (indeed, without further assumptions, the neural networks would
have been incapable of passing the sequence version of the task, as hu‐
mans did).
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Figure 1.12: The figure shows the standardized regression weights (beta) of a multiple regression of the
average performance from various human and non‐human primate groups across 44 data points (11 shapes X
4 deviant types), using the symbolic and neural‐network models as predictors. Stars indicate significance level
(•, p<.05; *, p<.01; **, p<.001; ***, p<.0001). Left, using the output of the penultimate layer of densenet196
pretrained on ImageNet. Right, using the output of the penultimate layer of resnet101 pretrained on Ima‐
geNet.

We veri෽ied that several other similar neural networks, such as
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Figure 1.13: A, Evolution of network performance across different retraining schemes. We started with
CorNet‐S trained on ImageNet and retrained it by adding new output (decoder) units for geometric shapes and
presenting it with only quadrilaterals for 13 epochs. For each epoch, we tested the network on new unseen
views of the quadrilaterals (solid lines) and on images from ImageNet (dashed lines). We studied the effects of
4 different training schemes, defined by (1) retraining either on all 11 shapes (darker colors), or only on a sub‐
set of 5 nameable shapes (rectangle, square, rhombus, parallelogram, trapezoid; lighter colors), and (2) either
freezing all layers but the penultimate one, corresponding to inferotemporal cortex IT (green), or backpropa‐
gating the error through the entire network (pink). B, Correlationwith experimentally observed performance.
Same format as Figure 1.9 in the main text. The figure shows the standardized regression weights (beta) of a
multiple regression of the average performance from various human and non‐human primate groups across
44 data points (11 shapes X 4 deviant types), using the symbolic and neural‐network models as predictors.
Stars indicate significance level (•, p<.05; *, p<.01; **, p<.001; ***, p<.0001). Each subplot corresponds to a
specific training scheme, with color‐matching panel A.
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Figure 1.14: PyTorch’s off the shelf VAE to produce all of our reference shapes in six possible orientations
and scaling. This plot shows the network’s loss on the testing dataset across training epoch for each shape –
50% of each shape was set aside for testing and the network was never trained onthese shapes. At the top of
the graph, exemplars of the target shape, and the network’s output, are produced, to show that the network
does reproduces some fine‐grained elements of the shapes, and does not just approximate a single shape
that would minimize distances for all of our target shapes. B, Details of the loss per shape across training. At
exponentially spaced epochs, detail of the loss (y axis) for each refence shape (x axis). C, Prediction of the
human and baboon effect. 11 points pearson’s R² of the correlation between the loss across shapes and the
average error rates for humans (top) and baboons (bottom). D, Predictive ability of the internal representation
of the fully trained VAE. Left: Standardized regression weights (beta) in a multiple regression of the data from
various human and non‐human primate groups across 44 data points (11 shapes X 4 outlier types) using the
symbolic and VAE models as predictors. Stars indicate significance level (•, p<.05; *, p<.01; **, p<.001; ***,
p<.0001). Right: detail of the correlation with the behavior from baboons and humans (exp. 2)
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1.3. DISCUSSION

DenseNet or ResNet, were similarly unable to ෽it human behavior
(See SI Appendix, Figure 1.12). It could be argued that the geometric
shape fell too far off the training space to elicit uninterpretable
results. However, the model trained to label the ImageNet dataset
did attribute to each geometry shape a highly consistent label (mostly
“envelopes”; Table 1.3). In order to test the effect of the training
space, we modi෽ied the network with extra output units and trained
it to label our reference shapes (See SI Appendix, Figure 1.13). Four
training strategies were tried, depending on whether we trained
the network to label all 11 shapes or just the shapes with names
in English; and whether all layers were allowed to change, or just
the ෽inal layer (see Supplementary Materials). Nevertheless, all
four manipulations failed to increase their predictive power of the
CNN for any human population, and either worsened the predictive
power for the baboon behavior, or left it unchanged. Since CNNs
are far from perfect in capturing human behavior, even for natural
stimuli(Baker et al., 2018; Geirhos et al., 2019; Ullman et al., 2016),
we also tested Variational Auto‐Encoders(Kingma & Welling, 2014)
(VAE). VAE’s architecture enforce the unsupervised learning of a low
dimensionality representation of a set of data by jointly learning to
encode and decode to/from a bottleneck layer. In that sense a VAE
“compresses” information and may therefore be more suited to the
task of encoding regular shapes. A classical VAE was successfully
trained to encode and decode our reference shapes (Figure 1.14A).
However, it too did not exhibit the geometric regularity effect. First,
its loss function varied very little across the 11 shapes (Figure 1.14B).
All shapes were learned similarly across training epochs, and the loss
did not correlate well with either the human or the baboon behavior
(Figure 1.14C). Second, using the same methodology as for CNNs, we
probed whether the internal compressed representation of the model
could be used to spot the outlier; again, it proved to be predictive of
neither the humans’ or the baboons’ behavior (Figure 1.14D).

1.3 Discussion

Using the geometric intruder test, regardless of the human popula‐
tions we tested, we observed a replicable geometric regularity effect:
෽inding an intruder amongst six quadrilaterals is much easier when
either the reference or the deviant shape are highly regular. This
effect is already present in young children (kindergartners and 1st
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graders), and was also replicated in uneducated adults from a remote
non‐Western population with reduced access to education, suggest‐
ing that the effect does not depend on age, culture and education.
Additionally, we show that this effect is replicable using different
presentation modes (by presenting the entire shape at once, or the
four vertices sequentially) and different tasks (intruder, serial search,
or subjective complexity rating).

Given this apparent universality in humans, it is noteworthy that the
baboons did not share this effect. Their performance was initially
quite poor with all quadrilaterals, but even when it later improved to
the level of human children and showed signi෽icant variations across
shapes, it still did not correlate with the geometrical regularity effect.
This striking difference occurred even though the baboons clearly
understood the demands of the intruder task, having reached a thresh‐
old of 80% correct or more on a ෽irst set of stimuli (where chance is
16.7% correct) and then generalized to new non‐geometrical stimuli.
It also cannot come from a lack of motivation: while a few baboons
did not complete the training, the twenty on which we collected data
spontaneously performed an average of 867 geometrical trials per
day (1st quartile 278 trials, median 641 trials, 3rd quartile 1332 trials).

An empiricist could argue that the difference was due to the different
environments in which humans and baboons live. The “carpentered
world” hypothesis (Segall et al., 1963) proposes that an increased sen‐
sibility for right angles and parallel lines arises naturally from a West‐
ern style of life in a world full of rectilinear shapes (objects, buildings,
books, etc.). Indeed, this was the dominant environment for most of
our participants. However, several arguments refute this idea. First
and foremost, the effect was present in the Himba people, but not in
baboons. Yet the rural settlements of the Himba are quite unlike indus‐
trialized societies and their environment is relatively free of rectilinear
objects. Conversely, the baboons we tested were not wild animals, but
grew up and lived in an environment comprising a mixture of natural
objects (trees and rocks) andman‐made, rectilinear objects (buildings,
doors, computer screen), which was arguably as “carpentered” as the
Himbas’ (see illustration in Supplementary Materials).

Second, even in a carpentered world, after projection in two dimen‐
sions, irregular shapes are arguably more frequent than regular ones
on the retina, because the observers are rarely perfectly aligned with
their environment for a rectilinear projection to occur. Parallelograms
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are also rare in our environment – and yet they ෽igured among the
shapes with few errors. Thus, it is not clear how frequency in the
environment would explain our result. Finally, we directly tested this
empiricist hypothesis by training arti෽icial neural networks with a
dataset (ImageNet) that featured many man‐made rectilinear image
categories, such as envelopes, binders, band‐aids or lampshades
(labels which they readily applied to our quadrilaterals; see Table
1.3). Even more crucially, we retrained them with our geometric
shapes (See SI Appendix, Figure 1.13). Neither types of training
suf෽iced for the neural networks to predict human behavior.

Thedissociatedperformanceof humans andbaboons suggests that the
intruder task can be solved using two strategies: a perceptual strategy,
well captured by current neural‐network models of the ventral visual
pathway, in which geometric shapes are encoded using the same fea‐
ture space also used to recognize any image (e.g. faces, objects, etc);
and a symbolic strategy, in which geometric shapes are encoded by
their discrete non‐accidental regularities such as right‐angles or par‐
allel sides. The latter strategy seems available to all humans, whether
in Paris or in rural Namibia. It is tempting to speculate that it may
be available only to humans, as suggested by the failure of all the ba‐
boons we tested. At the moment, however, this proposal remains ten‐
tative, because we only tested a limited number of humans and a sin‐
gle non‐human primate species. Baboons also responded much faster
than humans (~2s versus 5s or more, ee SI Appendix, Figure 1.2),
possibly preventing the deployment of a more abstract strategy. Both
facets of our proposal will have to be submitted to further tests, for in‐
stance by contrasting human infants, who are known to be born with
sophisticated symbolic abilities (Dehaene‐Lambertz & Spelke, 2015),
and chimpanzees, who may lack a logical or hierarchical mode of data
analysis (Penn et al., 2008).

The present results converge with prior research, usingmore complex
geometric displays and tasks, which indicated that all humans, even
young or uneducated ones, possess intuitions for geometry (Amalric
et al., 2017; Dehaene et al., 2006; Izard et al., 2011) and automatically
apply a symbolic, language‐like formalism to geometric data (Amalric
& Dehaene, 2017; Wang et al., 2019). Brain imaging showed that
this “language of geometry” rests primarily on dorsal and inferior
sectors of prefrontal cortex (Wang et al., 2019). These regions are
activated whenever humans reason about mathematical concepts and
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recombine them algebraically (Amalric & Dehaene, 2017; Maruyama
et al., 2012; Monti et al., 2012). While they are located outside of
classical language areas, their surface area is strikingly expanded in
the human lineage (Chaplin et al., 2013; Xu et al., 2020), and they
are therefore a good candidate for the emergence of novel human
capacities in evolution, including symbolic mathematics. Previous
work has shown that proto‐mathematical core knowledge is present
in other non‐human primates, such as numerosity in macaque mon‐
keys (Cantlon & Brannon, 2007; Nieder & Dehaene, 2009) or spatial
navigation in baboons (Noser & Byrne, 2007). However, what these
species may be lacking is a capacity to discretize those represen‐
tations and recombine them in larger language‐like combinatorial
expressions such as “four equal sides” (Dehaene et al., 2015; Fitch,
2014; Hauser &Watumull, 2017; Penn et al., 2008), which are needed
in order to conceive of a square and draw it. In the future, it would
be informative to test whether chimpanzees who received “language
training”, i.e. learned to use visual tokens to label numbers and objects
(Matsuzawa, 1985; Premack, 1988), would show the geometric
regularity effect. There are reasons to doubt it, since careful analyses
suggest that, unlike young children, chimpanzees do not use these
tokens in productive combinations (Yang, 2013).

A parallel issue is, how could the neural networks we tested be modi‐
෽ied to eventually pass the geometrical intruder test? Classical convo‐
lutional neural networks mimic only part of human visual recognition
abilities (Ullman et al., 2016). They roughly correspond to the ෽irst,
bottom‐up pass of invariant visual object recognition (Kubilius et al.,
2019), butmuchmore sophisticated recurrent top‐downarchitectures
are required to attain human‐level performance in slower perceptual
decisionmaking tasks (George et al., 2017; Spoerer et al., 2020). It will
be interesting to examine if those newer models pass the present test
or, as we tentatively suggest, if yet another level of symbolic represen‐
tation, perhaps based on symbolic tree‐based generative models and
program inference (Balog et al., 2017; Devlin et al., 2017; Lake et al.,
2015), is needed.

In summary, the present results suggest a new putative human
cognitive universal: the capacity to perceive the regularity of a
geometric shape such as a square. They hint at the exciting possibility
that humans differ from other primates in cognitive mechanisms
that are much more basic than language comprehension or theory
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of mind, and involve a rapid grasp of mathematical regularities in
their environment. Those ෽indings also provide a novel challenge for
arti෽icial intelligence, as none of the classical neural network models
we tested so far could capture human behavior.

1.4 Materials and Methods

1.4.1 Reference Shapes

All experiments relied on a single set of 11 ෽ixed reference shapes,
which were all quadrilaterals (Figure 1.1A; the coordinates of their
vertices are listed in Table 1.2). We matched most reference shapes
for two parameters. First, the average distance between all pairs of
vertices (i.e., the mean of six distances) was the same across the 11
shapes. This ensured that the reference shapes had the same overall
size. Second, the bottom edge was of ෽ixed length across 9 of the 11
shapes – this was particularly important for the sequence experiment,
where this segment was the last to appear on the screen and was the
only one that could contain an outlier. The square and the rhombus
were the only exceptions: they were only matched to other shapes
on the average of distances. This was necessary because (1) the
square had only one degree of freedom, and (2) the rhombus would
otherwise have been either too similar to the square or utterly ෽lat.
For some shapes (e.g. rectangle), this set of constraints led to a single
choice for the speci෽ic shape. For others, we selected a shape that sat‐
is෽ied the constraints while being maximally different from the shapes
in other categories. For instance, the speci෽ic quadrilateral that we se‐
lected for the “irregular” category made it maximally obvious that it
did not have equal sides, parallel sides, equal angles or right angles.
The full details required to reproduce the shapes are provided in Ta‐
ble 1.2.
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Table 1.2: For reproducibility we provide here the precise coordinates of the vectors
defining the three corners of each shape. With the bottom left vertex at coordinates
(0,0), the first six columns define the three vectors required to locate the top‐left, top‐
right and bottom‐right vertices. When presented, the reference orientation (0°) of each
shape was the one where the top edge was horizontal, around which the random orien‐
tations (‐25°, ‐15°, ‐5°, 5°, 15°, 25°) took place. All bottom‐right vectors, except for the
square and the rhombus, are matched for length. The ”Avg pairs” column gives the av‐
erage distance between all pairs of points, another metric matched across shapes. The
Perimeter and Area columns give respectively the perimeter and area relative to that of
the rectangle: for lack of enough degrees of freedom, these properties are not matched
across shapes. Neither explain the human behavior (area: p = .32, perimeter: p = .13) or
the symbolic model (area: p = .28, perimeter p = .14). See additional discussion of this
in the Additional Analysis section.

topLeft
x

topLeft
y

topRight
x

topRight
y

botRight
x

botRight
y

Avg
pairs Perimeter Area

Number
of proper‐
ties

rectangle 0 1 1.5 1 1.5 0 1.434 1 1 15
square 0 1.26 1.26 1.26 1.26 0 1.434 1.008 1.059 19
iso‐
trapezoid

0.365 1.362 1.109 1.362 1.5 0 1.433 1.014 1.019 5

parallelogram ‐0.517 0.896 0.983 0.896 1.5 0 1.434 1.014 0.896 7
rhombus ‐0.908 0.931 0.392 0.931 1.3 0 1.434 1.04 0.807 9
kite 0.766 1.29 1.77 1.007 1.5 0 1.434 1.017 1.007 5
right‐kite 0.529 1.404 1.5 1.038 1.5 0 1.434 1.015 1.038 7
hinge ‐0.248 0.533 0.98 1.393 1.5 0 1.434 1.015 0.986 1
right‐
hinge

‐0.296 0.634 1.064 1.268 1.5 0 1.434 1.008 0.984 2

trapezoid ‐0.227 1.2 0.724 1.2 1.5 0 1.434 1.02 0.98 1
Irregular ‐0.45 1.058 0.227 1.24 1.5 0 1.434 1.025 0.885 0

The constraints that we adopted implied that the shapes were not
strictly equalized in other dimensions such as surface or perimeter.
Such residual differences might explain why the performance of neu‐
ral networks and baboons varied slightly across shapes, but crucially
they were uncorrelated with shape regularity.

1.4.2 Deviant Shapes

For each reference shape, we generated four deviant shapes by
changing the position of the bottom‐right vertex. All deviant vertices
were equidistant from the correct vertex location. Two deviant
vertices were positioned along the bottom edge, either lengthening it
or shortening it (see Figure 1.1A). The two other deviant positions
preserved the correct distance from the bottom left vertex, and thus
the length of the bottom edge, but changed its orientation. The
distance of the deviant position from the correct positionwas ෽ixed for
all experiments and was common to all shapes. It was computed as a
proportion of the (෽ixed) average distance between all pairs of vertices
(55% for the sequence experiment; 30% for all other experiments).
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1.4.3 Variations in Orientation and Size

In their default presentation, the shapeswere centered on their center
of mass, and their top edge was horizontal. We then rotated the six
shapes by a random permutation of the following angles: [‐25°, ‐15°,
‐5°, 5°, 15°, 25°]. We avoided 0° rotation to prevent participants from
relying on parallelism with the edges of the computer screen, and we
avoided larger angles to side step the fact that some shapes had rota‐
tional symmetry (for instance, a 45° rotated square is identical to a
‐45° rotated square, but the same does not hold for a trapezoid). We
also scaled the shapes by a random permutation of the following scal‐
ing factors applied to the edge lengths: [0.875, 0.925, 0.975, 1.025,
1.075, 1.125].

1.4.4 Participants and Experimental Procedures

Details of the participants, design, procedure, ethical committee ap‐
proval and analyses speci෽ic to each experiment are presented SI Ap‐
pendix. All experiments involving French subjects were approved by
the ethical committee of Université Paris‐Saclay. The experiment in‐
volving Himba adults was approved by the ethical committee of Gold‐
smiths University of London. All subjects or their legal guardians pro‐
vided informed consent.
Brie෽ly, 612 French adults were recruited for online experiment 1, 117
for online experiment 2, and 48 for on‐line subjective ratings. For the
sequence andvisual search experiments,we tested respectively16and
11 participants in individual isolated testing booths. 28 French kinder‐
gartners (mean age 64months; range 59‐70months; 15 boys, 13 girls)
from two classrooms were tested individually in their school. Finally,
44 native Himba adults were recruited on‐site in small individual vil‐
lages of NorthernNamibia (SouthernAfrica). All weremonolingual na‐
tive speakers of Otjihimba, a dialect of the Otjiherero language, which
does not have vocabulary for most geometric shapes. Out of these, we
report data for the 22 participants who did not attend a single year of
schooling (for additional analyses of the effect of schooling, see Sup‐
plementary Materials).
Baboons (26 Papio papio, 18 females, age range 1.5‐23 years, mean
age 11 years) were tested at the CNRS primate facility (Rousset‐sur‐
Arc, France). Baboons lived in a 700 m2 outdoor enclosure with ac‐
cess to indoor housing and could, on a voluntary basis, at any time,
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enter ten Automated Learning Devices for Monkeys equipped with a
19‐inch touch screen, a food dispenser, and a radio‐frequency identi෽i‐
cation (RFID) reader that could identify the animals

1.5 Additional Methods and Details of each ex‐
periment

1.5.1 Humans

Adults, Experiment 1

Participants. 612 French adults were recruited for an online experi‐
ment (395 males, 217 females, age group breakdown: <18 years, 42
subjects; 18‐25 years, 127 subjects; 25‐60 years, 419 subjects; >60
years, 24 subjects). The experimentwas advertised on socialmedia us‐
ing the lab’s social media account. The entire experiment was run on
the participant’s device and took typically less than 15 minutes. Par‐
ticipants were not compensated for their participation. No personally
identifying information was collected in this experiment. This experi‐
mentwas approvedby the ethical committee of Université Paris‐Saclay
under the reference CER‐Paris‐Saclay‐2019‐08.

Procedure & Stimuli. This experiment featured only canonical
displays (5 reference shapes and 1 deviant shape). It started with
two training pairs of geometric shapes, randomly selected from
the 3 we used throughout the generalization 2 task for baboons.
There were therefore exactly 2 + 11*4 = 46 trials. The experiment
was programmed using the jsPsych framework (de Leeuw, 2015),
“a JavaScript library for running behavioral experiments in a web
browser.” Participants ෽irst ෽illed a consent form, then a demographic
questionnaire, which collected information regarding their sex, age
range, and education level. Then they were presented with the task
instructions, and ෽inally a sequence of intruder trials. On each trial,
they were asked to click on the outlier, either with the mouse or with
a touchscreen if their device had one. In this experiment only, the six
shapes were organized in a circle as big as the screen permitted. Upon
clicking on a shape, participants received visual (highlighting the
selected shape in red if incorrect, in green otherwise, and highlighting
the correct shape in green) and auditory feedback (rising or falling
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tone). Shapes were shown in solid black on white background.
Statistical analysis: Responses slower than the overall 99th percentile
were removed from analysis of this experiment, as well as experiment
2 and the Himbas experiment to match the analyses: during online
experiments, some trial took unreasonable durations (e.g. over a
minute), strongly suggesting participants taking a break during the
experiments. In experiment 1, the 99th percentile thresholding some‐
times removed all datapoints from some participants’ conditions (e.g.
an entire shape); in such case the participant was removed entirely:
in total, 7 out of 612 recruited participants were removed.

Adults, Experiment 2

Participants. 117 French adults were recruited for an online experi‐
ment (45 males and 72 females; age group breakdown: 18‐25, 9 sub‐
jects; 25‐40, 43 subjects; 40‐60, 56 subjects; >60, 9 subjects). The re‐
cruitment process and ethical approval were identical to that of the
෽irst experiment. Because this experiment was longer, participants
were incentivized to participate by being offered to participate in a lot‐
tery for a 30€ cash prize that three participants would receive. Should
they want to participate to the lottery, participants had to disclose an
email address, which was collected separately from the experiment’s
data and couldnot be linked to it afterwards. 83out of 117participants
submitted their email for participation.

Procedure and Stimuli. The procedure and stimuli were identical to
that of experiment 1 with the following ෽ive differences. (1) Partici‐
pants saw an additional webpage with information about the lottery.
(2) Shapeswere displayed inwhite on a black background. (3) Instead
of displaying the shapes along a circle theywere displayed in two lines
of three items, as shown in Figure 1.1B. (4) Participants received 10
training trialswith images andanother 6with the easy geometric train‐
ing shapes, in two consecutive blocks. They had to repeat the training
blocks if they performedworse than 80% correct. The training stimuli
were identical to those used in the baboon experiment (seeFigure1.6)
and included random rotation1 and scaling. (5) Half of the displays

1Due to a bug in the code of the experiment, the training images were not scaled,
though they were properly rotated. This bug only affected the training images. All
geometric shapes, in training or testing, wereproperly scaled. This issuewaspresent
exclusively for experiments with humans.
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used a standard presentation (5 reference shapes and 1 deviant), and
half used a swapped presentation (5 deviant shapes and 1 reference
shape), for a total of 88 experimental trials with geometric shapes.
Compared to experiment 1, the changes listed under points 2‐5 were
introduced in order to anticipate the changes required to replicate
the baboon experiment. The displays in Figure 1.1B show example
stimuli from this version of the experiment. This design was adopted
throughout all other experiments. This experiment is available at
https://neurospin‐data.cea.fr/exp/mathias‐sable‐meyer/oddball/.

Sequence Experiment

Participants. 19 participants were tested in this experiment. It was
run at ENS in Paris, in isolated testing booths. The ෽irst three partic‐
ipants were pilots whose results were used to tune the dif෽iculty of
the experiment. Subjects were recruited through the RISC mailing list,
mean age was 23.1 years old (std = 2.55), 9 women and 11 men, with
a mean of 3.44 years of post‐bachelor education (std = 1.5). All par‐
ticipants signed an informed consent form and received 15€ for their
participation. Due a schedule con෽lict one participant did not complete
one condition (“parallelogram”) of the experiment: the missing value
was replaced in the ANOVA with that participant’s overall average er‐
ror rate, and left missing from all other analysis.

Procedure. The experiment was organized in 9 mini‐blocks, each
with a ෽ixed geometric shape. In each mini‐block, participants were
෽irst shown 6 examples of a given sequence (with random scaling
and rotation), and were then presented with sequences that could
contain a deviant. For each sequence after the sixth example, after the
4th dot was displayed, they had to press a button to indicate whether
that sequence followed the reference sequence or not. Following
each answer, they received auditory feedback using an ascending
pitch if correct and a descending pitch otherwise and were shown
the four dots location, as well as a 5th dot at the correct location for
deviant trials. After 150 trials, there was a short pause, and then a
newmini‐block started, with 6 new examples to start with.

Stimuli. The sequences of dots traced the geometric shapes in a top‐
left, top‐right, bottom‐left, bottom‐right order. Shapeswere presented
with a random orientation (with angles now ranging from 0 to 359°)
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and random scaling so that they spanned 150 to 225 pixels on the
screen, and they were positioned so that the last position would be
at one of 9 possible locations on the screen. In this sequential format,
we considered it essential that the last two positionswere identical for
all shapes. We therefore excluded the two shapes for which we could
notmatch the bottomedge, namely the square and the rhombus. Given
the greater dif෽iculty of the task in the sequential presentation mode,
we had to adjust the distance of the deviant to the correct location. Pi‐
lot participants were run in order to estimate the distance required
to obtain a success rate of ~75% overall, and the deviant value used
for the remaining N=16 participants was 0.55 times the matched aver‐
age distance of any two points. The presentation order of the blocks
was random with a single block for each shape and 150 trials within
each block2, with half of the trials being outliers. The timing of the se‐
quence was as follows: points appeared for 400 ms followed by a 200
ms empty scree. After the participants’ response, the screen stayed
black for a random duration ranging from 750 ms to 1250 ms.

Subjective Rating

Participants. 48 French adults were recruited for an online experi‐
ment (21 Males and 27 females; age group breakdown: 1‐18, 1 sub‐
ject; 18‐25, 3 subjects; 25‐60, 41 subjects; >60, 3 subjects). The re‐
cruitment process and ethical approval were identical to that of the
෽irst experiment.

Stimuli. We presented the participants with our 11 quadrilaterals, in
the reference orientation and presented as static images with a white
shape on a black background.

Procedure. After the consent and the questionnaire, participants
were instructed to give a rating for each shape one the page using
a scale from 1 to 100, while trying to be as consistent in the rating
as possible. Participants were randomly assigned to one of two
conditions: either they were asked to give a rating of “complexity”
(27 participants) or to give a rating of “regularity” (21 participants).
Participants saw a page with shapes from another study not analyzed

2This was adjusted depending on participants time constraints: min 100, max
170, median 155. Two participants had to stop before the end because of time con‐
straints, one missing one shape and the other two.
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here, and then a page with our 11 reference shapes and a slider from
1 to 100 for each shape. They were asked to not transfer the scale
from the previous shapes from to the 11 quadrilaterals, but instead to
try and use the entire scale again and to be as consistent as possible
between the shapes. We merged the data from the two conditions
by reversing the scale of the “regularity” condition so that a score of
100 on “regularity” would map on to a score of 1 on “complexity” and
conversely.

Visual Search Paradigm

Participants. 11 French adults were recruited (5 Females, 5 males,
age range 21 ‐ 35, mean 27.3 years, one did not complete the demo‐
graphic form). Participants were not compensated for their participa‐
tion. This experiment was covered by the ethical committee of Univer‐
sité Paris‐Saclay under the reference CER‐Paris‐Saclay‐2019‐063.

Stimuli. For each trial, repetitions of a given shape and possibly its
deviant were presented in black on light gray (Figure 1.3A). Their
rotation and scaling were uniformly sampled, similarly to previous
experiments, and they were randomly placed inside a gray circle
that spanned almost the entire computer screen. The experiment
comprised 11 blocks, one per reference shape, each with 24 trials
randomly shuf෽led, using a factorial design with three factors, namely,
deviant type (4 possible deviants), numbers of shapes on screen (3
possibilities: 6, 12 or 24) and presence or absence of a deviant shape,
for a total of 264 trials. The experiment was programmed using the
jsPsych framework and was run online.

Procedure. When connecting to the shared online URL, participants
clicked to start and were prompted with instructions. For each dis‐
play, they had to press the left arrow key if they thought that one of
the shapes differed from the others, and the right arrow key if they
thought that all shapes were identical. After pressing one of the arrow
keys, the experiment started: the screen displayed a light‐gray circle
spanning the maximum available area with 15px padding at the top
and the bottom, inside which items were placed randomly. After each
response, subjects received both auditory and visual feedback, which
explicitly indicated the location of the deviant shape if onewas present
(the deviant was colored green if answered correctly, red otherwise).
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The experiment was structured in blocks of similar shapes and lasted
about 20 minutes in total.

Analysis and Results. For each shape, each number of displayed item,
and each target presence condition, we removed responses whose re‐
sponse time exceeded the mean response time plus three standard de‐
viation. Detailed analyses of the visual search available in the supple‐
mentary materials.

Himbas

Participants. 44 native Himba adults were recruited for an ex‐
periment taking place on a tablet computer (mean age 24.5 years,
minimum 14 years old and maximum 62 years old, 13 Male and 31
Females). The Himba of Northern Namibia (Southern Africa) are a
population living a traditional lifestyle in rural settlements, with little
exposure toWestern society. All the participants were native speakers
of (andmonolingual in) Otjihimba, a dialect of the Otjiherero language,
which does not have vocabulary for most geometric shapes (though
they refer to “squares”, for example, with a very direct metaphor
akin to “a shape with four angles”). Out of the 44 participants, we
analyzed data of 22 participants who did not attend a single year of
schooling (15 Females, 7Males, age range 14‐62, mean 26); additional
analyses of the effect of schooling below. Ethical approval was ob‐
tained from the ethics committee of Goldsmiths University of London
(REISC_1390, 4 june 2018).

Procedure & Stimuli. The experiment was rigorously identical to ex‐
periment 2, but the instructions were given verbally by a translator.
Participants were compensated in kind (1Kg of sugar, 1Kg of ෽lour, and
500mg of soap).
A typical testing day with the Himba unfolds as follows. On arrival at a
village, we park outside the village boundary. The interpreter speaks
to the village chief or his representative if he is absent for more than
a day. The chief is informed of the general purpose of our visit and
asked if he can inform the village that theymay participate in our tasks
in return for a small gift of ෽lour, sugar and soap (value ~USD 3). We
do not offer money for which, in any case, the remote villagers would
have little use. If the chief agrees (there has never been a casewhen he
has not) we set up our equipment. We never approach any individual

75



1 Sensitivity to geometric shape regularity in humans and baboons

Himba, but our translatorwelcomes them if they ask to take part. Occa‐
sionally, people are too busy or reluctant to take part, but normally the
only reason for obtaining small samples of participants is the absence
of a large part of the population away from the village with their herds.
In general, the word gets round and people volunteer, sometimes com‐
ing from other nearby villages.

In all cases, participants are told that they can refuse to take part in
the study or withdraw at any point. We do not collect the names of the
participants. We collect information of gender, estimated age, and re‐
ported level of education. Weexplain thepurpose of the study inwords
that can be understood by the participant. Explanations are translated
from English to Otjihimba by the local guide. We obtain oral consent,
and inform the participants that they will receive the gift in any case,
even if they decide to terminate the task. Although we decided to al‐
ways terminate a testing session if a participant shows signs of distress,
this never happened given the trivial nature of the tasks. Beyond ac‐
quiring approval that conforms to our professional Code of Practice,
we always bear in mind codes of conduct appropriate for the Himba.

The translator explains the following to each participant:

”You are here to participate in a vision task which is a bit like a game.
You do not have to participate if you do not want to and can stop at
any time if you feel uncomfortable. The task is not dif෽icult and will
last for about 30 to 45minutes. Youwill be given instructions and do a
short practice ෽irst. The task is harmless and does not cause any pain.
You can ask us not to use your results after you have participated. At
the end of the task, you will receive three presents (෽lour, sugar, and
soap). Before we start, you must con෽irm that you agree with these
things. You can now ask any question if something is unclear. If you do
not like the task, you can stop at any time and leave. You will receive
the presents anyway.”

All these elements (plus some simple explanations about the aim of
the test, that is, to study “how we see the world”) are also given to the
chief when we arrive in a traditional village. We hope and expect that
theHimbawill be direct and indirect bene෽iciaries, and that the project
will contribute to the national and international database on endan‐
gered languages and cultures, and to the preservation of the Himba
language and culture. We take seriously the responsibilities and the
mutualities of bene෽it that accrue from cross‐cultural researchwith re‐
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mote peoples, and we believe that we can demonstrate that we have
actively furthered remote peoples’ interests in our previous research.
Issues of identity, belonging and exclusion are currently highly promi‐
nent and our project contributes to inter‐cultural understanding in a
non‐trivial way. The intellectual property rights of the Himba in their
language and culture is explicitly respected.

Kindergartners

Participants. 28 French kindergartners (mean age 64 months; range
59‐70 months; 15 boys, 13 girls) from two classrooms were tested in‐
dividually in their school, by groups of two, in a quiet room. Each par‐
ticipant was accompanied by one experimenter. They were not com‐
pensated for their participation. This experimentwas approved by the
ethical committee of Université Paris‐Saclay under the reference CER‐
Paris‐Saclay‐2019‐08 after a speci෽ic amendment was submitted. Par‐
ents were contacted and had to give their consent beforehand. The
participants gave oral consent on the day of the experiment.

Procedure & Stimuli. The experiment was identical to experiment 2
except for the fact that we removed the swapped trials to make the
experiment shorter.

First Graders

Participants. 156 French ෽irst participated in this study. Parentswere
sent letters beforehand, and could request that children not partici‐
pate in the project. Participants were tested individually on tables in a
quiet room in their school. The data collection was part of the Bien
Joué project, approved by the ethical committee of Université Paris‐
Saclay under the reference CER‐Paris‐Saclay‐2019‐042‐A1.

Procedure & Stimuli. The experiment was completely identical to the
kindergartners’ experiment.

1.5.2 Baboons

General Setup.

Participants were 26 Guinea baboons (Papio papio, 18 females, age
range 1.5‐23 years, mean age 11 years) from the CNRS primate facil‐
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ity (Rousset‐sur‐Arc, France). Baboons lived in a 700 m2 outdoor en‐
closure with access to indoor housing and had a permanent access
to ten Automated Learning Devices for Monkeys equipped with a 19‐
inch touch screen and a food dispenser. Note that the baboons’ envi‐
ronment contains a mixture of natural features (e.g. trees, congeners)
and arti෽icial tools and buildings with rectangular shapes (e.g. prefab‐
ricated rooms, testing booths, computer screens, etc).
A key feature of ALDM is a radio‐frequency identi෽ication (RFID)
reader that can identify individual baboons through microchips
implanted in their arm (Fagot & Bonté, 2010). The baboons therefore
participate in the research at will, without having to be captured, as
the test programs can recognize them automatically. The experiment
was controlled using EPrime software (Version 2.0, Psychology Soft‐
ware Tools, Pittsburgh). Ethical Standards: the baboon experiment
received ethical approval from the French Ministry of Education
(approval APAFIS 2717‐2015111708173794 v3).

Training Scheme

The baboon experiment required several steps of training to ensure
that, stimuli set aside, the primates understood the intruder task and
could generalize rapidly to new stimuli from different domains. Be‐
cause we were not sure about the outcome of each of the steps, the
entire experiment presented in Figure 1.6Awas run over three differ‐
ent batches of about one week: a pilot mid‐October 2018, a ෽irst test
of generalization late November 2018, and the test with the quadrilat‐
erals in May 2019.
In the ෽irst pilot batch, we tested only 6 primates (Cauet, Dora, Dream,
Flute, Hermine and Articho, although the latter animal was not inter‐
ested in the task and stopped early on). We attempted to start training
with displays containing 6 shapeswith one intruder. While all baboons
except Articho succeeded after 2000 to 3200 trials, the low reinforce‐
ment level (chance at one in six)made the early exploration of the task
unrewarding and we feared baboons might become disinterested be‐
fore starting to grasp the task. Therefore, for the two other batches of
training, we introduced progressive learning steps with only 3, then 4,
5 and ultimately 6 shapes on display for each trial (see Figure 1.6).
In the second batch, we tested all available primates (22 animals) fol‐
lowing the structure of Figure 1.6A up to and including generalization
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1, i.e., the ෽irst generalization task. Each primate automatically moved
to the next step whenever the error rate fell under 20%. Out of 22 ba‐
boons, 18 learned the task to the criterion up to stage 5 andprogressed
to the generalization task. Out of these 18, all generalized successfully:
the percentage of errors was signi෽icantly better than chance on the
෽irst blockwith 10 novel images in both presentationmodes (binomial
test against chance, separately for each baboon: all p’s < .001). With
further training, all animals again reached the 20% error threshold.
Out of the remaining four, three did not reach the end of the ෽irst train‐
ing task at all, and one reached the second training task and stopped.
On Figure 1.6B, the data reported in the “initial training” and “gener‐
alization 1” plots are taken from this batch of data.
The third and ෽inal batch tested all available primates (25 animals), fol‐
lowing the structure of Figure 1.6A. All animals were restarted from
the ෽irst training task and followed the entire training scheme, only
skipping generalization 1 and going straight to generalization 2, then
on to themain test. Out of 25 baboons, 20 baboons reached generaliza‐
tion 2. Testing for signi෽icant generalization on only 6 different trials
could not be done for each animal individually, but we veri෽ied that
performance was better than chance when grouping the 20 animals
together (binomial test, 42 errors in 120 trials, chance at 83.3%, p <
.0001). After further training on those stimuli, all of them successfully
reached 20% error threshold on generalization 2 andmoved on to the
test task where they stayed either until they reached 100 blocks of 88
trials (11 primates) or until they stopped performing the task.
Among the 5 baboons who did not participate to the ෽inal test, 4 never
reached the 20% error threshold on the ෽irst training task (three of
them stopped being interested in the task early on, one stayed at
chance for more than 7500 trials but kept trying). Finally, one primate
progressed very slowly over 8800 trials in the ෽irst training task,
reached the 20% error threshold on block 88 (after having performed
5700 trials in session one and reaching 54% errors), and stopped per‐
forming the task. The data reported in Figure 1.6B (“generalization
2”) and Figure 1.6C are taken from this batch of data, i.e. from the
20 primates that reached generalization 2. For reference, Figure 1.7
shows the evolution of performance over successive training stages
for each of those 20 animals (෽irst 20 rows), and the performance for
the remaining 6 animals who could not be successfully trained (last 6
rows).
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Method

The stimuli were identical to those used with French adults in the sec‐
ond version of the intruder task, except (i) the experiment itself was
reprogrammed using custom software speci෽ic to the baboon lab, and
(ii) baboons received a drop of dry wheat for every correct response.
Incorrect responses were followed by a 3‐sec time‐out indicated by a
green screen.

Additional Analyses

To evaluate the heterogeneity across primates, Figure 1.8 presents
the cross‐correlation matrix of the error rates of the 20 baboons that
reached the testing task, separately for early (෽irst 33 blocks), middle
(blocs 34 to 66) and late (blocs 67 to 99) parts of the experiment. Of
note, baboons were free to take different numbers of blocks – this ex‐
plains why there are fewer primates in the “late” category. Within a
category, all primates are comparable in that they performed the same
numberof blocks. We can see that as baboonsprogressed in their train‐
ing (and fewer remain), their behavior became increasingly consistent
across animals.

1.5.3 Models

Definition of the Symbolic Model

The symbolic model assumes that participants extract the discrete ge‐
ometric properties of shapes while abstracting away from super෽icial
changes in size, location, orientation anddisplay type (static or sequen‐
tial). As a result, the model predicts that outlier detection dif෽iculty
should depend only on the symbolic distance between the lists of fea‐
tures of the standard and outlier shapes. The more geometric proper‐
ties a shape has, the more properties a deviant might break, therefore
the easier it shouldbe todetect. Because thedistance is computedpair‐
wise, thismodel does currently not account for any difference between
canonical and swapped conditions, although a penalty could easily be
added.
Thismodel has a single free parameter: a perceptual threshold θbelow
which the model fails to discriminate lengths or angles and therefore
considers them equal. Themodel considers that two lengths are equal
by looking at their ratio: two lengths 𝑙1 and 𝑙2, with 𝑙1 > 𝑙2, are consid‐
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ered equal whenever 𝑙1
𝑙2

− 1 < 𝜃. For simplicity, the same threshold is
used for angles: two angles are considered equal whenever they differ
by less than 𝜃 × 𝜋

2

For any given quadrilateral, and for a given threshold, the model com‐
putes a vector of bits of length 22, representing the following proper‐
ties: (i) 6 bits, one per pair of edges, coding whether their lengths are
equal or different, (ii) 6 bits, one per pair of edges, coding whether
their directions are parallel or not, (iii) 6 bits, one per pair of angles,
coding whether their angles are equal or not, and (iv) 4 bits, one per
angle, coding whether the angles are right angles or not.
For all reference shapes and all deviants, the model computes the dis‐
tance between the shapes by counting the number of symbolic proper‐
ties onwhich the two shapes differ, and returns a list of 11x4 distances.
The threshold θ was ෽itted by maximizing the r² ෽it between the sym‐
bolic model and the behavioral data of French adults, Exp. 2. For the
෽igures and the analyses, we used the value of 12.5%, but a good ෽it (r²
= .37) was already obtained with θ=0, and any value between 3% and
20%yielded similar r² values (Figure1.10), indicating that our results
do not hinge on a particular choice of behavioral tolerance threshold
but rather on any reasonable ability to detect similarity lengths and
angles.

Definition of the Neural Network Model and its Variants

We used the CORnet neural network, variant S, whose architecture
is schematically depicted in Figure 1.9B. We used the weights made
available by the authors of (Kubilius et al., 2018) after training on the
ImageNet‐1000 dataset, where the task of the network was to assign
each image of the dataset a label among 1000 possible categories .
We did not modify the network or weights, but simply retrieved the
activity of units in the internal layers (roughly matching brain areas
V1, V2, V4 and IT). To simulate a behavioral trial, we fed the six shapes
separately to the network, and retrieved the six vector outputs of
the penultimate layer, corresponding to inferotemporal cortex (IT)
and which yielded the best performance (Figure 1.13 shows the
predictions when other layers are used). We considered the vector
most distant from the average of the others to be the outlying shape,
and repeated this process 10000 times to approximate the error rate
of the network. We also report the performance obtained from layers
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V1, V2 and V4, as well as that obtained by simply picking the outlier on
dimensions such as the perimeter or area. The same procedure was
repeated using two other top‐scoring networks of brain‐score.org:
DenseNet and ResNet (see Figure 1.12).

Variational Auto‐Encoder (VAE) Model

For the VAE, we used PyTorch (Paszke et al., 2019)’s off‐the‐shelf im‐
plementation of the canonicalmodel (Kingma&Welling, 2014) (ReLUs
and the adam optimizer replaced of sigmoids and adagrad, as recom‐
mended by PyTorch’s implementation to make the network converge
faster.) For each of the 11 reference shape, we generated 6 rotated
times 6 scaled images of size 24x24. These 36 images were randomly
split in a training set and a testing set, both of size 18. The VAE was
then trained over the course of 150 epochs tominimize the loss on the
training set, with an evaluationon the testing set at each epoch (Figure
1.14A shows the loss on the testing set across epochs for each shape).
This gaveus access to theVAE’s performance across the courseof learn‐
ing for each shape (details in Figure 1.14B) andwe correlated the per‐
formance for each shapewith the behavior of both humans (exp.2) and
baboons in Figure 1.14C. To make the comparison with CNNs more
straightforward, for each of our shapes (references and deviants), we
extracted the output of the innermost layers of the fully trained VAE,
the latent mean and the latent standard deviation layer, from which
we replicated the methodology using with the CNNs in order to sim‐
ulating behavioral outlier detection. The results are summarized in
Figure 1.14D: overall, the output of the innermost layers varied very
little across shapes, and those variations did not capture the variance
of either any of the human population, or any of the baboons.

1.5.4 Additional Analyses, Results and Discussions

Detailed Analysis of the Visual Search Experiment

The error rates and mean response times of the visual search exper‐
iment were entered into an ANOVA with shapes (11‐level factor),
number of items (as a numerical factor in 6, 12 or 24), target presence
(present or absent), and their interaction, and participant as the
random factor. For error rates, there was a signi෽icant effect of shape
(F(10,100) = 16.15, p < .0001), of number of items (F(1,10) = 20.33, p
= .0011), of target presence (F(1,10) = 31.45, p = .0002), of shape and
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target presence (F(10, 100) = 2.03, p = .0375), but little interaction
between number of items and target presence (F(1,10) = 4.91, p =
.0509), no signi෽icant interaction between shape and number of items
(F(10,100) = 0.87, p = .564), nor a three‐way interaction between
shape, number of items and target presence (F(10,100) = .42, p = .93).
For response times, there was a signi෽icant effect of shape (F(10,100)
= 9.89, p < .0001), of number of items (F(1,10) = 26.70, p = .0004),
of target presence (F(1,10) = 29.58, p = .0003), of the interaction
between shape and number of items (F(10,100) = 3.71, p = .0003),
but no signi෽icant interaction between number of items and target
presence (F(1,10) = 3.78, p = .080), no signi෽icant interaction between
shape and target presence (F(10, 100) = 0.90, p = .54) nor a three‐way
interaction between shape, number of items and target presence
(F(10,100) = .52, p = .88).

The error rates closely followed the classical geometric regularity ef‐
fect observed in the intruder task, as therewas a signi෽icant correlation
between the mean error rates in visual search and the French adults
error rates in the intruder task (experiment 2), both overall (R²=.98, p
< 0.0001, Figure 1.3B) and regardless of the number of items on the
screen (6 items, R² = .86, p < .0001, 12 items R² = .93, p < .0001, 24
shapes R² = .96, p < .0001). The mean RTs also followed a geometric
regularity effect overall (R² = 0.88, p < 0.0001) and for each number
of items (6 items, R² = .90, p < .0001, 12 items R² = .89, p < .0001, 24
shapes R² = .85, p < .0001).

To test for the seriality of visual search, the mean response time
within each subject was entered in separate ANOVAs for each shape,
with number of items (a numerical factor equal to 6, 12 or 24), target
presence (present or absent), and their interaction as factors, and
participants as a random factor. All shapes elicited a serial visual
search (all p < 0.05 for the effect of the number of items; Figure 1.3C).

For each shape and participants, we computed the slope of the visual
search for both present and absent condition by ෽itting a linear model
on the median of the response times per item number. We then tested
whether the slope of the visual search in the “absent” condition was
twice the slope of the “present” condition, as expected from serial
search (Wolfe, 1998). For each shape, we used a paired t‐test to com‐
pare, across subjects, the distribution of slopes in the absent condition
and the distribution of twice the slope in the present condition. None
of those differences except for one shape were signi෽icant at the .05
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level (right‐kite: p = .044; all other shapes p > 0.05). Additionally, the
best ෽it of a linear model across subjects that predicts the slope, as
computed above, when the item is absent from the slope when it is
present had a signi෽icant (p = .0003) coef෽icient of 1.66, SE = .30, not
signi෽icantly different from 2 (p = .29).
Finally, the slope of the visual search exhibited a geometric regularity
effect: it correlatedwith the error rates observed in experiment2, both
overall (R² = .70, p = .0013), andwhen the target was present (R² = .60,
p = .0047; Figure 1.3C) and absent (R² = .68, p = .0019).

Role of Feedback in Human and Baboons

It could be argued that, in the intruder task, human subjects were
treated differently from baboons because on error trials, the visual
feedback the correct responses was highlighted in green (surrounded
with a green square for training images, ෽illed in green for geometric
shapes), thus giving an additional indication about the task. To
examine whether this made any difference in humans, we analyzed
the data from each participant’s very ෽irst trial with a given shape,
before they received any feedback. In both experiments 1 and 2, such
analysis produced results that were indistinguishable from the results
of the full dataset analysis. The error rates were strongly correlated
with those of the full dataset (exp. 1: r² = .99, p < .0001; exp. 2: r² =
.94, p < .0001); the best ෽it of a linear regression “full data ~ β0 + β1 *
෽irst_trial” had an intercept β0 not signi෽icantly different from 0 and a
slope β1 not signi෽icantly different from 1 (all p’s > .1), suggesting that
little or no learning took place in human participants over the course
of the 88 trials.

Retraining of the Neural Networks with Geometric Shapes

A possible reason for the failure of neural networks to mimic human
data could be that the geometric shapes differed from the network’s
training data (colored photographs). Perhaps our stimuli ended up
on the extremities of the feature hyperspace, thus leading to incon‐
sistent or chaotic behavior of the network. Here we present several
arguments that mitigate this possibility.
First, the labels that were attributed to the shapes were highly con‐
sistent and suggested that the network did recognize them. Table
1.3 provides details of the labels given by CorNet without retraining.

84



1.5. ADDITIONAL METHODS AND DETAILS OF EACH EXPERIMENT

The network overwhelmingly categorized the shapes as “envelopes,”
and its next choices were mostly “Band‐Aids” or “binders”, with a
few interesting deviations (e.g. trapezoids were classi෽ied as “lamp‐
shades”). This result was replicated almost perfectly with DenseNet,
while ResNet primarily categorized the shapes as envelopes, followed
by noisier categories.
Table 1.3: For each shape, columns show the first five top predictions and the associated
average confidence level, for CorNet trained on ImageNet. Each shape was presented in
36 slightly different variants (6 rotations X 6 scaling factors). We averaged these predic‐
tions for each shape, and put in each column the prediction whose average associated
confidence level was the highest, and the corresponding average confidence level.

label1 label2 label3 label4 label5

Rectangle envelope, 71.68% band aid, 7.22% band aid, 2.02% spatula, 2.28% letter opener, 1.61%
Square envelope, 74.62% envelope, 33.07% switch, 2.11% book jacket, 1.66% face powder, 1.57%
iso‐trapezoid envelope, 62.05% envelope, 37.8% lampshade, 6.98% lampshade, 4.51% binder, 2.04%
Parallelogram envelope, 64.91% band aid, 7.64% cleaver, 3.75% binder, 2.7% table lamp, 2.57%
Rhombus envelope, 58.4% band aid, 9% letter opener, 4.61% book jacket, 2.8% wing, 3.96%
Kite envelope, 68.63% band aid, 10.18% binder, 2.04% carton, 1.64% switch, 1.68%
right‐kite envelope, 74.28% band aid, 7.51% face powder, 2.25% binder, 1.8% binder, 1.89%
Hinge envelope, 77.49% band aid, 3.91% table lamp, 2.08% band aid, 1.58% cleaver, 1.95%
right‐hinge envelope, 77.09% band aid, 4.69% letter opener, 2.38% binder, 1.71% table lamp, 1.55%
Trapezoid envelope, 72.57% band aid, 8.41% binder, 2.62% face powder, 2.46% face powder, 1.63%
Irregular envelope, 59.55% envelope, 28.07% binder, 3.3% carton, 2.6% table lamp, 2.02%

Second, the three convolutional neural networkswe testedwerehighly
consistent in the error rates that they predicted; and, as showing in
Figure 1.9C, Figure 1.9D and Figure 1.12, these predictionswere not
random, but tightly correlated with baboon behavior.
Third, we examined how CorNet would perform if it received addi‐
tional training with geometric shapes (similar perhaps to a young
child being exposed to geometric shapes and toys). Our results are
summarized in Figure 1.13. We trained different versions of CorNet
to categorize either all of our 11 shapes (“All shapes”), or the subset
of 5 shapes that have a common name in English (“Nameable shapes”,
i.e. square, rectangle, rhombus, parallelogram and trapezoid).
Our goal was to keep the properties that made the original network
successful in image recognition, but also familiarize it with our shape
space. We proceeded as follows: (i) we added either 5 or 11 output
unit to the output (decoder) units; those were fully connected to the
previous layer and randomly initialized, while keeping the rest of the
network intact; (ii) we trained the network to categorize solely our
shapes (solid white on black images, one shape per image, same ro‐
tation and scaling factors as for behavioral experiments), and allowed
the backpropagation tomodify either the entire network (“All layers”),
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or only the last main group of layers (“IT only”), with training on 80%
of the images per shape and validation on the remaining 20% (plotted
on Figure 1.13A); the learning optimizer was Adam with a learning
rate of 1.0E‐6; (iii) we checked, for each training step, the performance
of the updated network on the original dataset, ImageNet. After suf෽i‐
cient training, all conditions lead to perfect categorization of all geo‐
metric shapes, including on the validation set of shapes. Meanwhile,
performance on ImageNet remained high, with a higher loss when the
entire network was allowed to change in order to accommodate the
new geometric shapes (Figure 1.13A); (iv) ෽inally, using our multiple‐
regressionmethodology, we compared the predictive power of each of
the four types of retrained network with that of our symbolic model.

The results appear in Figure 1.13B. None of the four training schemes
signi෽icantly improved the predictive power of the neural network
model on human participants. As for baboons, the various training
conditions either did not change anything or worsened the predictive
power.

Possible Effect of Non‐matched Visual Properties

We matched our 11 shapes on several important size variables (see
the section on “Stimuli” above). However, those constraints imposed
that we could not match them for other visual properties. In partic‐
ular, the shapes were not strictly equalized in area and perimeter
(see Table 1.2). Given the random scaling we added to each of the
six shapes, choosing the outlier based on area or perimeter could
not give rise to the high level of performance observed in humans.
Furthermore, although the error rate predicted by such strategies
varied across shapes, regressions indicated it could not explain the
geometric regularity effect observed in humans (all p > .05). In
Figure 1.11 we show the predictions and correlation with baboons:
the area‐based strategy signi෽icantly correlates with the observed
behavior in baboons (p < .0001) while the perimeter‐based strategy
does not (p = .5). Both strategies elicit more errors than the baboons,
indicating that these strategies do not suf෽ice to explain the baboons’
behavior.
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Possible Effect of Education in Himba Participants

The Himba population we sampled was heterogeneous in its formal
education background. Out of the 44 participants we tested, 22 never
attended school (those subjects are reported in themain text), and the
22 others ranged from 1 to 8 years of school, with otherwise compara‐
ble general demographic information.
This variability provided an opportunity to test for the effect of the
number of years of schooling on the geometric regularity effect. The
error rates were entered into an ANOVA with geometric regularity (a
numerical factor determined by the error rate in French subjects in ex‐
periment 2), years of schooling (a numerical factor ranging from 0 to
8), their interaction and participants as random factors. There was a
signi෽icant effect of shapes (F(1, 42) = 229.21, p < .0001) but no sig‐
ni෽icant effect of the years of schooling (F(1, 42) = 0.05, p = .82) and
no signi෽icant interaction (F(1,42) = .65, p = 0.43). This negative ෽ind‐
ing does not exclude that, with more participants, an effect of educa‐
tion would be observed. However, this additional analysis con෽irms
the universality of the geometric regularity effect.

Possible Impact of a “Carpentered World”

Figure 1.15: Rectilinear testing booth used in the CNRS primate facility of Rousset‐sur‐Arc, France

The Western environment has been called a “carpentered world”
(Segall et al., 1963), where vision is bombarded with many rectilinear
objects (e.g. buildings, tables, books, etc.). Could such a difference
in the statistics of the environment explain the geometric regularity
effect? We believe that this is unlikely for several reasons explained
in the discussion part of the main text. The main reason is that we
replicated the effect in the Himba, but failed to observed it in baboons.
The rural settlements of theHimba are quite unlike industrialized soci‐
eties and their environment is relatively free of rectilinear objects (for
photographs, see e.g. https://en.wikipedia.org/wiki/Himba_people).
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Conversely, the baboons were not wild animals, but grew up and
lived in an environment comprised of both natural objects (trees,
rocks) and man‐made, rectilinear objects (buildings, doors, testing
booths, computer screens… see inset picture). Arguably, the baboon’s
environment is equally or even more “carpentered” than the Himbas,
see Figure 1.15.

1.6 Addendum Post‐publication

I have beenmade aware of an article by Zekun Sun and Chaz Firestone
(Sun & Firestone, 2021) that was published during the reviewing pro‐
cess of the previous chapter as an article. The content of that article
merits a special discussion here: the authors generate shapes of in‐
creasing complexity by parametricallymodulating their internal skele‐
tons, and observes that (i) geometric complexity impacts visual search,
even when low‐level features are matched, (ii) geometric complexity
drives exploration and engagement, and (iii) geometric complexity is
cognitively penetrable.
Future work using the quadrilateral shapes presented in chapter 1
should contrast our symbolic model with a model which leverages
shape skeleton – though the notion of which skeleton is appropriate
itself is not completely obvious (Firestone & Scholl, 2014). If the
stimuli used cannot separate the two models, it could be useful to
generate additional shape which would score low on one metric
and high on the other to better understand the cases in which the
two models differ. It is useful to observe that while shape skeleton
is appropriate for a very wide number of visual objects, including
contour of real‐work objects, our metric is only de෽ined for geometric
shapes, see chapter 5 for a longer discussion of this observation.
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Chapter 2

MEG and EEG evidence for symbolic and non‐
symbolic neural mechanisms of geometric
shape perception in adults and infants

Abstract

How does the human brain encode highly structured visual ob‐
jects such as geometric shapes? We test the previously pro‐
posed hypothesis that there are two strategies mentally repre‐
senting geometric shapes: a perceptual bottom strategy which
can be mimicked by a neural network model of object recog‐
nition, and a symbolic strategy which represents shapes using
a list of their exact geometric properties such as parallel sides
and right angles. We exposed participants to streams of geomet‐
ric shapes interleaved with occasional oddballs, organized by
blocks of geometric complexity. We ෽ind that the extent towhich
we can decode the oddballs from the brain signal matches how
much fewer symbolic properties they have compared to domi‐
nant shape of the block. Crucially, we show that the neural rep‐
resentation of the shapes is highly structured in both space and
time, and goes through two distinct phases: ෽irst, it is organized
as predicted by the neural network of object recognition in the
occipital areas, and then it is organized as predicted by a sym‐
bolic model in a broad dorso‐frontal brain network. In infants,
we provide preliminary evidence of different processing associ‐
ated with different shapes using a similar task in EEG, but fall
short of unequivocal conclusions; we discuss possible ways for‐
ward.
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2 M/EEG evidence for symbolic and nonsymbolic mechanisms of shape perception

There are a number of cognitive systems which seem to have
quite distinct and speci෽ic properties. These systems provide
the basis for certain cognitive capacities […] .The language
faculty is one of these cognitive systems. There are others.
For example, our capacity to organize visual space, or to deal
with abstract properties of the number system, […]

Noam Chomsky, quoted in (Rieber, 2013)

Our experiments in the previous chapter shed light on the possible co‐
existence of two strategies for dealing with the mental representation
of geometric shapes. In the present chapter, I test this possibility di‐
rectly by looking at the spatio‐temporal dynamic of a shape perception
task with M/EEG, in adults and infants.

2.1 Introduction

In the previous chapter, we posited that two models coexist when
perceiving quadrilateral shapes, even for our educated French adult
groups. The ෽irst model would be shared with non‐human primates,
and corresponds to a perceptual strategy, well captured by current
neural network models of the ventral visual pathway. The second
model would rely on geometric properties such as right angles and
parallelisms, while the second would fall in the. However, in that
population the data was very strongly in favor of the symbolic model –
could the behavior only re෽lect part of the underlying mental process?
If so, we expect that using neuroimaging techniques we can separate,
both in space and in time the two unfolding mental processes.
Using the same stimuli as the previous experiment, we devised a new
behavioral experiment basedondistancesbetween shapes, as opposed
to our outlier‐detection task so far which could only give us within‐
shape information. This gives us anotionof distance betweendifferent
shapes, by looking at an aggregate of the response time and the error
rate. We thenmodel this confusionmatrix using exactly the samemod‐
els as those in the previous chapter, serving as a con෽irmation that they
generalize beyond the exact task they were designed for. We can also
perform Multidimensional scaling (MDS) to get a measure the most
import dimensions at play when performing the intruder task with ge‐
ometric shapes, and seewhether those dimensionsmaponto elements
of our models.
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2.2. METHOD

Thenwecoulduse thesemodels to explore the spatio‐temporal dynam‐
ics of the perception of geometric shapes inMEG. Inside aMEG record‐
ing device, we presented participants with long streams of our quadri‐
lateral shapes arranged in blocks with occasional intruders, following
an oddball paradigm. Thenwe tried to (i) seewhether the intruder cre‐
ated bigger surprisal signal during regular shape blocks than irregular
ones, and (ii) account for the brain signal in terms of both visual and
symbolicmodels of shapes, both temporally and spatially using source
reconstruction.
Finally,we try to thequestion left open in theprevious chapter of the in‐
෽luence of the statistics of the environment (and, to a lesser extent, ed‐
ucation) by testing three‐to‐four‐month‐old infants using a paradigm
very similar to the one used in MEG: an oddball paradigm, with EEG
recordings of the subjects. If the signal for different shapes followed
systematic patterns that we can account for using our symbolic model,
it would strongly strengthen the argument in favor of a universally
available mechanism for exact geometric properties in humans. How‐
ever, the data so far is on the fence about this question, and the results
presented here, while informative, are inconclusive about that ques‐
tion.

2.2 Method

2.2.1 Participants

Adults, Behavioral

In total, 342 participants took part in this online experiment. The ex‐
periment was advertised on Twitter, starting from the 22nd of March,
2022. People interested to participate could simply click on the pro‐
vided link, read and accept a written consent, in which they declared
not to be legally minor. Participants were informed they could with‐
draw from the experiment at any moment by simply quitting the web‐
page. The procedure and the consent were approved by the local eth‐
ical committee (reference: CER‐Paris‐Saclay‐2019‐063). Data collec‐
tion for the purpose of the study was stopped soon after, on the 8th
of April, 2022. 330 participants met our criteria for data analysis, i.e.
answering all questions proposed and reporting an age above the age
of 18th. Analyzed participants’ demographics were as follows: ages 20
to 84, 1st quartile 37, median 53, 3rd quartile 65; genders 142 females,
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2 M/EEG evidence for symbolic and nonsymbolic mechanisms of shape perception

177 males, 6 non‐binary, 2 others, and 3 preferred not to answer. Par‐
ticipants dominantly reported being from the US (228 participants),
followed by Egypt (15), Canada (12), Italy and Great Britain (6 each),
and a long distribution of other countries.

Adults, MEG

TwentyhealthyFrenchadults (13 females; 21‐42years old,mean: 24.9
years old, SD: 8.1 years old) participated in the MEG study. All par‐
ticipants had normal hearing, normal or corrected‐to‐normal vision,
and no neurological de෽icit. All adults provided informed consent, and
adult participants were compensated for their participation. For all
but one participant, we had access to anatomical recordings in 3TMRI,
either from prior, unrelated experiments in the lab, or because the
MEG session was immediately followed by a recording: analyses that
require source reconstruction are performed on nineteen subjects.

Infants

We collected data from a total of 43 three‐to‐four‐month‐old infants,
with normal pregnancy and birth (GA > 38 weeks, Apgar scores ≥ 7/8
at 1/5 min, birthweight > 2.5 kg, cranial perimeter ≥ 33.0 cm), tested
in the lab. The protocol was approved by the regional ethical com‐
mittee for biomedical research (Comité de Protection des Personnes
Region Centre Ouest 1, EudraCT/ID RCB: 2017‐A00513‐50), and the
study was carried out according with relevant guidelines and regula‐
tions. The experiment was run during two dissociated periods with
slightly different methodological choices: during the ෽irst period from
July 22nd, 2020 to October 21st, 2020, we collected data from 23 partic‐
ipants (9 females; 14 males; average age 105 days, sd=17 days), out of
which 3were considered impossible to analyze due to excessivemove‐
ment or very noisy data. The second group was comprised of 20 new
participants collected between December 9th, 2021 and February 11th,
2022, and follows a similar distribution of age and gender. Out of this
group, a single infant was considered impossible to analyze due to a
very high number of epochs categorized as “bad” by the preprocessing
pipeline. The testing age was chosen to be the youngest at which we
could reasonably assume that vision was suf෽iciently developed. Care‐
givers gave their written informed consent before starting the experi‐
ment.
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2.2.2 Materials
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Figure 2.1: A. Stimuli The eleven shapes used throughout the experiments in this chapter, as well as the
general template used to generate deviant version of each shape (bottom‐right). B. Behavioral Task Two ex‐
amples of intruder test using the same shapes, either in the canonical condition or in the swapped condition.
C. Passive presentation task. General structure of the passive presentation tasks.

Geometric shapes were generated following the procedure described
in (Sablé‐Meyer, Fagot, et al., 2021) (Chapter 1). Deviants, when used,
were generated following (Sablé‐Meyer, Fagot, et al., 2021) by displac‐
ing the bottom right corner by a constant distance in four possible po‐
sitions: that distancewas a fraction of the average of all pairs of points,
which was standardized across shapes and was .3 which was used in
(Sablé‐Meyer, Fagot, et al., 2021) for the hard condition.

Behavior

In the behavioral task, no deviants were used. Instead, participants
had to detect one of the eleven shapes amongst eight copies of one of
the other shapes. Shapes were presented in a 3x3 grid, in pure white
on pure black. Each shape was randomly scaled differently by shuf‐
෽ling possible scaling factors [0.85, 0.88, 0.92, 0.95, 0.98, 1.02, 1.05,
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1.08, 1.12, 1.15], and randomly rotated similarly using [‐25°, ‐19.4°, ‐
13.8°, ‐8.3°, ‐2.7°, 2.7°, 8.3°, 13.8°, 19.4°, 25°]. Upon answer, auditory
feedback was provided in the form of upward/downward going tunes,
and coloring of the shapes (green for the intruder, possibly red for the
chosen shape if different from the correct response). Participants took
110 trials, one for each reference/intruder pair of shapes, with no two
identical reference shapes used in consecutive trials, and the outlier
of a trial being different from the reference shape of the previous trial.
Two examples of trials are shown in Figure 2.1.

M/EEG

In the MEG and EEG tasks, we relied on purely passive shape percep‐
tion, as the experiment needed to be suitable for three‐month‐old in‐
fants. Shapes were presented centered on the screen, one shape every
second, with shapes remaining onscreen for 800ms and a centered ෽ix‐
ation cross present between shapes for 200ms. Additionally, to keep
babies attending visually, during their 800ms presentation, the shapes
slowly increased in size: in total, a scale factor of 1.2 was applied over
the course of 800ms, with linear interpolation of the shape size during
the duration of the presentation. The size change was intended to cap‐
ture infants’ attention, and 1Hz presentation was a trade‐off between
the number of trials per participants we could collect and a minimum
duration required for babies (Yu & Smith, 2016).
Shapes were presented in blocks, following an oddball paradigm.
Within a block, all shapes were identical up to scaling (randomly
sampled in [0.875, 0.925, 0.975, 1.025, 1.075, 1.125]) and rotation
(sampled in [‐25°, ‐15°, ‐5°, 5°, 15°, 25°]), except for a few oddballs
which were deviant version of the reference shape.
In MEG in adults, blocks were 30 shapes long, with exactly four odd‐
balls that replaced any shape after the ෽irst six and never two oddballs
in a row, for a ෽inal 13.3% of presented oddballs. A run was made of
11 blocks, one per shape in random order, and participants were re‐
cruited to attend 8 runs (although a fewwere stopped one run earlier).
In EEG in babies, the exact parameters changed between two exper‐
imental groups. In both groups, only a subset of the shapes were
used to shorten the experiment duration: square, rhombus, rectangle,
isosceles‐trapezoid, right‐hinge and irregular (underlined on Figure
2.1.A). In the ෽irst group, blocks were 60 shapes long, with 8 reference
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shapes to start with and then 40 references and 12 oddballs shuf෽led
so that no two oddballs are in a row, for a ෽inal 20% of presented
oddballs. In the second group, we radically shortened the blocks
down to 15 (with some randomness, each block’s length was uniform
in [13, 17]) and no oddball were presented.

2.2.3 Procedure

Adults, Behavior

The experimental procedure started with instructions, followed with
a series of questions on demographic aspects (device used: mouse or
touchscreen, country of origin, gender, age, highest degree obtained)
and on subjective self‐evaluation assessments, with answers on a Lik‐
ert scale from 1 to 10: current skills in mathematics; current skills in
෽irst language. Then, participants performed the task. The instruction
were as follows: “The game is very simple: you will see sets of shapes
on your screen. Apart from small rotation and scaling differences, they
will be identical, except for one intruder. Your task is to answer as fast
and accurately as you can about the location of the intruder by clicking
on it. The dif෽iculty will vary, but you always have to answer.”

Adults, MEG

After inclusion by the lab’s recruiting team, participants were pre‐
pared for the MEG with ECG and EOGs captors, as well as Head
Position Indicator coils, which were digitalized to track the head
position throughout the experiment. Then we explained participants
that the task was a replication of an experiment with babies, and
therefore was purely passive: they would be presented shapes and
were instructed to pay attention to each shape, while moving, blinking
and saccading as little as possible. Then they sat in the MEG and we
checked the head position, ECG/EOG and MEG signal. From that point
onward, we never opened the MEG door again to avoid having to reset
the signal and allow for cross‐run decoding and generalization. Then
participants took typically 8 runs consecutively, with small breaks
between runs to rest their eyes. At the end of the experiment, partic‐
ipants took the intruder test from Chapter 1, and ෽inally we spent
some time debrie෽ing with participants the goal of the experiment.
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Infants

After the caregivers arrived and formal requirements were met, an
elastic EEG net soaked in salted water was put over the subject’s head;
then both the caregiver and the subjectmoved to the experiment room,
where the netwas connected to the recording apparatus and last check
of the data quality were performed. Subjects were tested in a sound‐
proof Faraday cage equipped with a computer screen and loudspeak‐
ers. Infants were held by a caregiver, sitting on their lap, and their po‐
sition was chosen to guarantee personal comfort while ensuring good‐
quality data acquisition, notably avoid excessive movement, and en‐
sure easy gaze to the computer screen. Stimuli were displayed cen‐
tered on the screen, once per second. To maximize engagement, each
stimulus was synchronized with an auditory stimulus, identical for all
shapes. Breaks were taken whenever necessary, using soothing mu‐
sic and colorful stimuli on the screen, in a few cases the experimenter
entered the room with puppets to distract the subject for a bit. The
experiment ended as soon as infants became restless.
In the ෽irst group of participants, another experiment was intermixed
with the geometric shape, for a colleague’s independent project. That
project displayed visual mixture of faces and houses at a rate of 1 per
second as well. When participants started becoming agitated with ei‐
ther type of stimuli, we switched to the other type of stimuli, often cap‐
turing their attention again. The face/house stimuli are not analyzed
in the present work, and this particular procedure was not replicated
in the second group of participants.

2.2.4 Data preprocessing

MEG preprocessing

MEG Data. The preprocessing of the data was performed using MNE‐
BIDS‐Pipeline, a streamlined implementation of the core ideas pre‐
sented in (Jas et al., 2018) and leveraging BIDS speci෽ications (Niso et
al., 2018; Pernet et al., 2019). The pipeline performs automatic bad
channel detection (both noisy and ෽lat), then apply Maxwell ෽iltering
and Signal Space Separation on the raw data (Taulu & Kajola, 2005).
Then the data is ෽iltered between .1 Hz and 40Hz, and resampled to
250 Hz. Then it is epoched for each shape, staring 100ms before stim‐
ulus onset and stopping 1100ms after, and the relevant metadata for
each epoch is recovered from the stimulation procedure at this step.
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Artifacts in the data (e.g. blinks, and heartbeats) are repaired with
signal‐space projection (Uusitalo & Ilmoniemi, 1997), and threshold
derived with “autoreject global” (Jas et al., 2017). For source recon‐
struction, some preprocessing steps are performed by fmriprep (see
below). Then, sources are positioned using the “oct5” spacing with
1026 sources per hemisphere, and we use the e(xact)LORETAmethod
(following recommendations from (Jatoi et al., 2014; Pascual‐Marqui
et al., 2018)) using empty‐room recordings performed right before or
right after the actual experiment to estimate the noise covariance ma‐
trix.

Fmriprep’s MRI Anatomical Preprocessing. T1‐weighted (T1w)
images were corrected for intensity non‐uniformity (INU) with
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs
2.3.3 (Avants et al., 2008). The T1w‐reference was then skull‐stripped
with a Nipype implementation of the antsBrainExtraction.sh work‐
෽low. Brain tissue segmentation of cerebrospinal ෽luid, white‐matter
and gray‐matter was performed on the brain‐extracted T1w using
fast (Y. Zhang et al., 2001). Brain surfaces were reconstructed using
recon‐all (Dale et al., 1999) and the brain mask estimated previously
was re෽ined with a custom variation of the method to reconcile
ANTs‐derived and FreeSurfer‐derived segmentations of the cortical
gray‐matter of Mindboggle (Klein et al., 2017)

Infants

Raw data was recorded ad 500Hz using EEG nets comprised 128
sensors, continuously throughout the entire experiment. The data
was preprocessed using a recent version of the APICE pipeline (Fló
et al., 2022), with a pass‐band ෽ilter of .2‐40Hz, epoching of [‐150ms,
1150ms] window around each shape presentation, and otherwise
default parameters for artefact rejections, bad channels interpolation,
and bad epoch tagging.

2.3 Results

2.3.1 Adults, Behavior
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Figure 2.2: A. Confusion matrix from the human behavior, as well as the two models used to account for it.
Data was centered and scaled to be directly comparable, units are therefore z‐scores of the associated dataset.
Note that while the two models are symmetrical, the human behavior is not (see the canonical vs. swapped
conditions, indicated in different shades of green on this plot), and is therefore modeled differently afterward.
B. Coefficients in a GLM predicting humans’ confusion matrix with our models, either in the canonical or in
the swapped condition. In both cases, the symbolic model is significantly different from 0 and significantly
better than the IT model. The symbolic model significantly worsens in the swapped condition when compared
to the canonical condition, but while the IT model appear to improve it does not reach significance. C. MDS
stemming from the confusion of the canonical (left) and swapped (right) conditions. Two principal dimensions
are identified, and our 11 shapes are positioned in that space, together with confidence ellipses obtained by
resampling (500 folds, 95%‐confidence interval ellipses). The black arrows represent the best fit of an addi‐
tional dimension, the “symbolic model” prediction, with both data‐derived principal dimensions, and mostly
lines up with the first dimension.
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Results

Participants were much better than chance overall, and for each
reference shape (Error Rates [ER]: chance level is 8/9=.88; overall
ER=.109±.004; min=.02±.003, max=.186±.01; “±” indicates standard
error of the mean). The differences across shapes signi෽icantly im‐
pacted both error rates and response times, see Table 2.1, similarly
the intruder had a signi෽icant effect, and whether the trial had a
hard shape within easier shapes or the other way around also had a
signi෽icant effect. Both reference, intruder and interaction come out
as having signi෽icant effects on both RT and ER (Type‐II Anovas on
(g)lms, all ps <.001).

Table 2.1: Statistics of the ANOVA across subjects associated with the three relevant
predictors, for two dependent measures, with the statistics and the effect size associ‐
ated with each component. “canonical” refers to trials where the intruder was a simpler
shape than the reference one.

DV Predictor 𝜂2
G Statistics

er reference 0.19 F10,3290=114.34; p<.001
intruder 0.109 F10,3290=65.37; p<.001
canonical 0.035 F1,329=79.48; p<.001

rt reference 0.064 F10,3290=28.24; p<.001
intruder 0.037 F10,3290=16.27; p<.001
canonical 0.013 F1,329=15.76; p<.001

Thanks to the contrastive nature of the search, we can also measure
a dissimilarity metric based on t the visual search. Because we only
had one trial per participant and condition, we didn’t do any summary
statistics at the level of participants: in order to build a confusion ma‐
trix across shapes, we therefore used 𝑑 = 𝑎𝑣𝑔𝐸𝑅

𝑎𝑣𝑔𝑅𝑇
as a dissimilarity

measure (average Error Rates divided by average Response Times.)
Thanks to the high number of participants, no norming was required
at the participant level (e.g. using the rank of the response time, or
rescaling the response times on a shared scale). As con෽irmations we
performed all the analyses with such harmonization strategies and ob‐
served only negligible differences and do not report them.
Then, we predicted the behavioral confusionmatrix using twomodels,
straightforwardly adapted from the previous chapter. On the one hand,
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we computed a geometric‐property distance matrix. For each shape
we computed a feature vector as indicated in (Sablé‐Meyer, Fagot, et
al., 2021); then the distance between two shapes is simply the distance
between two feature vectors, otherwise said the number of symbolic
properties by which two shapes differ. On the other hand, we used
CORnet to compute a visual feature vector: we created various ren‐
dering for each shape (using various rotation and scaling parameters),
and then computed the internal representations associated with each
exemplar of a shape in the successive layers of CORnet. Then we pre‐
formed representational similarity analysis (RSA) on those internal
representation, using rsatoolbox1 to compute cross‐validated maha‐
lanobis distance between all possible pairs of shapes. The two mod‐
els are not signi෽icantly correlated across all 55 possible pairs (linear
model, F1,53= 2.1, p=.15), but their correlation coef෽icient sits at .19 so
further analyses will try to perform GLMs instead of separate correla‐
tions.

Note that both of these matrices are symmetrical, i.e. expect the dis‐
tance from shape A to shape B to be the same as that from shape B to
shapeA. But this is not true at all in general, as evidenced by a vast liter‐
ature using search asymmetries to understand visual attention, basic
features, or novelty (Treisman& Gormican, 1988; Treisman& Souther,
1985; Wolfe, 2001). For that reason, we performed separated analy‐
ses for both conditions. In both cases, the symbolic model’s beta was
signi෽icantly above zero, and vastly dominated the visual model which
was not signi෽icantly different from zero. Interestingly, the symbolic
model’s effect was signi෽icantly different between the canonical and
the swapped condition: it decreased. The visual model did not signi෽i‐
cantly change.

Ifwe replace the human confusionmetricwith simply 1
𝑅𝑇 , we can com‐

pute a confusionmatrix for each participant, instead of averaging over
participants, and repeat the same analysis with a mixed‐effect model,
to getmuchmore sensitive estimation of the respective coef෽icients for
bothmodels. The overall effects and effect sizes are virtually the same,
but now all the estimations have much narrower error bars and while

1I couldn’t ෽ind a reference citation for this toolbox, but as of writing its documen‐
tation states, “The rsatoolbox is developed through a community effort by the labs of
Nikolaus Kriegeskorte, Jörn Diedrichsen, Marieke Mur and Ian Charest. It was con‐
ceived during the RSA retreat 2019 in BlueMountains, Ontario. The toolbox replaces
the 2013 matlab version the toolbox of rsatoolbox previously at ilogue/rsatoolbox
and re෽lects many of the new methodological developements.”
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effect sizes so more tests reach signi෽icance threshold. In particular, in
this more ෽ine‐grained model there is a signi෽icant effect of the visual
model in both conditions, and this effect signi෽icantly increases when
the effect of the symbolic model decreases.

Finally, we performed MDS on the behavior’s confusion matrix to esti‐
mate from the data the most impactful dimensions that explain par‐
ticipants’ behavior. Once again, we performed these analyses sepa‐
rately on the canonical and swapped conditions as they elicit differ‐
ent behaviors. To estimate the variability of the MDS, we performed
a resampling analysis by repeatedly sampling with repetitions a list
of subjects from our data, performing MDS again, aligning the new
MDS with the full MDS using Procrustes analysis to remove meaning‐
less differences such as rotation, translation and dilation, and ෽inally
deriving variability by repeating this process 500 times. Our imple‐
mentation of this method follows that of (Borg et al., 2018; Borg &
Groenen, 2005; De Leeuw & Mair, 2009; Mair et al., 2022). Figure
2.2 shows the shapes projected on the principal dimensions for both
canonical and swapped conditions, as well as 95% con෽idence inter‐
vals (ellipses). Note that ellipses in the swapped conditions are bigger
because the data itself is more variable: swapped conditions are typi‐
cally harder, leading to longer response times, but crucially also an in‐
creased variability in response times across participants (the variabil‐
ity scaleswith the response time, a case of heteroscedasticity.) What is
more, since each shape is associated with a number of symbolic prop‐
erties, we can also project the vector of symbolic properties onto our
data‐drivendimensions. If ourmodel ismuchpoorer than the inherent
dimensions stemming from the data, its projection should be “short”
(i.e., close to the origin), and its orientation random. However, what
we can see is that in both conditions, our model’s norm is greater than
1 and aligns signi෽icantly with our ෽irst dimension. Using resampling
again, we can see that (i) in both conditions, our model’s projection
signi෽icantly correlates with dimension 1, as intuited from the graph
(Student test on the distribution of slopes for the 1st dimension, canon‐
ical t=1768.4, p<.0001, swapped t=236.2, p<.0001), (ii) in both condi‐
tions, ourmodel’s projection also correlateswith dimension 2 (canoni‐
cal t=329.4, p<.0001; swapped t=16.5, p<.0001, this can’t be seen from
the graph but indeed about a fourth only of our sampling folds had
a negative slope), and ෽inally (iii) the correlation with dimension 1 is
always greater than with dimension 2 (Paired student test; canonical
t=269.8, p<.0001; swapped t=42.6, p<.0001).
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Discussion

First, these new results indicate that our model for shape complex‐
ity, presented in the previous chapter, is valid not only within shapes,
but also across our different quadrilaterals: they systematically differ
in complexity, and we can model this difference using a model that
worked successfully for the intruder detection task.

Furthermore, we can see that the main dimensions that are required
to account for the data sort our shapes according to a main axis that
resembles our theory‐motivated model. This result suggests that not
only our model accounts some of the behavior, but it characterizes
what dominates the decision process when picking the intruder, an ob‐
servationwe couldn’t do based solely onmodel comparisonwith other
models such as neural network models.

Finally, this provides us with a new way to look at our shape: the simi‐
larities and differences between the different shapes. This is an impor‐
tant step for brain imaging analyses, because we can now use this the
newly de෽ined confusionmatrix to explore the spatio‐temporal aspects
of shape processing that MEG and fMRI provide.

2.3.2 Aduls, MEG

Decoders

Stimulus
Onset

.50

.58 Fixation

+1s
Next Stimulus

Decoding ROC AUC
reference vs. oddball

Time
p<.001

Figure 2.3: Overall Decoding Performance. Performance (ROC AUC, chance=.5) of a linear decoder classi‐
fying reference vs. oddball shapes from the magnetometer of the MEG signal; averaged over all participants,
ribbon indicates std. error across participants, grayed area indicates a significant cluster obtained by non‐
parametric temporal clustering, p<.001.

First, wewanted to con෽irm that despite the absence of an explicit task,
participants were paying attention to the visual presentation and de‐
tecting outliers. For this we trained a decoder on the magnetometers
of theMEG signal to discriminate reference shapes versus oddballs, for
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Figure 2.4: Decoding Performance. Performance of a decoder trained to classify reference vs. oddball from
themagnetometer of theMEG signal. First column: performance for each shape indicatedwith colors. Second
column: correlation across shape, for each time step, with a simple symbolic model of shape complexity: to
keep the usual ordering, the data is correlates with 1 minus the number of symbolic properties rescaled from
0 to 1; a value of 0 indicated that the shape has the maximum number of symbolic properties in the set, and
1 the minimum. Right column: visualization of the correlation across the main significant cluster’s average
data. In the top row, row a single decoder was trained with data from all shapes, while in the bottom row one
decoder was trained for each shape.

each participant and each time step. To avoid confounds due to the sig‐
nals’ autocorrelation, we train and test our decoders on separate runs
systematically, using six folds (we used three splits, [1, 3, 5, 7] vs. [2,
4, 6, 8]; [1, 2, 5, 6] vs [3, 4, 7, 8] and [1, 2, 3, 4] vs [5, 6, 7, 8], for each
split we train on one side and tested on the other; then reciprocally,
and we average performance over all folds). Furthermore, we only in‐
cluded reference shapes in positions that could in principle have been
deviant, to avoid thedecoderpicking on “early” versus “late” presented
shapes.

Overall, this yields a very signi෽icant, slow, sustained effect visible
in Figure 2.3: from 176 ms after stimulus presentation onward, the
decoder’s performance are signi෽icantly better than chance, with
a peak performance obtained at 420 ms after stimulus onset, a
performance of .57 (SE=.008), and an overall very signi෽icant cluster
(p<.001; non‐parametric temporal cluster‐level paired t‐test, (Maris
& Oostenveld, 2007) as implemented by MNE). Note that the cluster
detectionmethod is not suited to accurately delimit onset and offset of
clusters (Sassenhagen & Draschkow, 2019); however, it does indicate
a strong temporal cluster which is very visible in the data in Figure
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2 M/EEG evidence for symbolic and nonsymbolic mechanisms of shape perception

2.3.
Having trained such a decoder, we can separately test it for each shape.
Given that participants, in an intruder task, ෽ind it harder to detect in‐
truders within irregular shapes than within e.g. squares, we expect
this to be re෽lected in the MEG signal: the signal for the square and its
deviants should be different enough for the decoder to pick themapart,
but the same should not hold true for the less regular shapes. Indeed,
this is what we observe (see Figure 2.4) when we test the decoder2.
The square and rectangle yield very high performance, and the perfor‐
mance slowly degrade as we test less regular shapes. Nevertheless,
each shape is decoded better than chance at the p<.05, even the most
irregular ones: the training, agnostic to the nature of the shape, picked
regularities that are appropriate for all shapes, to different extents.
For each time point, we can compute the correlation between the
11 decoders’ performance, and a metric derived from the number
of symbolic properties: one minus the number of symbolic proper‐
ties, rescaled from 0 to 1. This metric was chosen to keep simpler
shapes on the left of the x‐axis, in accordance with other ෽igures
correlating data with the error rates. This correlation is negative
because shapes with more symbolic properties are easier to decode,
and it remains signi෽icantly negative in a sustained way, yielding a
long, very signi෽icant temporal cluster. To visualize the effect, we can
also average the data across the entire signi෽icant cluster for each
shape and participant, and plot a simple linear regression, visible in
the rightmost column of Figure 2.4. This is mostly for visualization
purpose and does not constitute an independent ෽inding from the
temporal cluster (otherwise this would constitute double‐dipping).
A related but crucially independent analysis is to train separate de‐
coders for the outlier of each shape separately. We report this analysis
in the bottom row of Figure 2.4. The ෽irst things to observe is that
the performance are much noisier: this is expected from the fact that
the decoders are trained on less than a tenth of the data in this anal‐
ysis. Again, the performance for detecting intruders in simple shapes
exceed those of detecting them in complex shapes, and a gradient of
complexity emerges. This yields a signi෽icant temporal cluster on the

2For this analysis and the next one, the epoched datawas smoothedwith a sliding
window of 100ms for readability, but all analyses were replicated on unsmoothed
data and identical results hold, with clusters broken up because of higher variability
in the data.
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correlation with the symbolic model, comparable in timing with the
previous analyses. This decoder, unlike the previous one, fails to de‐
code better than chance for four shapes: the isosceles trapezoid, the
right hinge, the trapezoid and the irregular shape.

This last point deserves a remark: in principle, a decoder could pick up
“oddball signal signatures” that are shape‐independent, but expressed
more or less strongly depending on the shape in the block. Conversely,
theymay latch on signatures of the oddball shape that are different for
different shapes. What these two decoders suggests is that the ෽irst sit‐
uation is at play in our experiment: indeed, the ෽irst decoder manages
to perform better than chance even on the most irregular shapes, indi‐
cating that what its decision criterion, whichwas computed in a shape‐
agnostic way, is useful even for irregular shapes. On the other hand,
when we split the training across shapes, it seems the data restricted
to the irregular shapes is not enough to accurately ෽ind a detection cri‐
terion for oddball in the irregular shapes case, which is re෽lected in
the poor performance of the second decoder for those shapes. Overall
poorer performance can re෽lect the fact that each decoder is trained on
1

11
𝑡ℎ of the data, but the decodability of themost irregular shape in one

decoder and not the other shouldn’t be impacted by this imbalance.

Representational Similarity Analysis

In order to test more speci෽ic theories of the mental representation
of shapes, we performed Representational Similarity Analysis (RSA)
of the data. For each pair of shapes and for each time point, we com‐
puted the cross‐validated squaredMahalanobis distance (short: cross‐
nobis distance; here cross‐validated over runs) following (Walther et
al., 2016) to get a metric of how similar the brain activity evoked by
each pair of shapes is. Intuitively, this can be seen as a more sophisti‐
cated way to measure the extent to which topographies from two dif‐
ferent shapes are correlated over time.

For each time point, this gives us a dissimilarity matrix which we can
model using the two models we adapted for the behavior data. After
scaling all dissimilarity matrices, we can ෽ind the coef෽icients that min‐
imize the whitened correlation between the data‐derived matrix and
a weighted sum of the two models: this gives us a temporal dynamic
of the mental representation of shapes according to our two models.
We report those coef෽icients in Figure 2.5.A, together with temporal
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Figure 2.5: A. RSA in sensor space and temporal clusters. Time series of the coefficients that minimize the
whitened correlation between the data‐derived crossnobis dissimilarity across shapes and the dissimilarity de‐
rived from both a Neural Network model and a symbolic model described in Figure 2.2. Shaded areas indicate
clusters derived with non‐parametric permutation tests significant at the p<.05 level. B. RSA in source space
and spatial clusters. Significant spatial clusters associated with each cluster detected in A. after performing a
searchlight RSA in source space across shapes and modeling the resulting dissimilarity matrix as previously.
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clusters derived by non‐parametric permutation tests. There is a ෽irst
signi෽icant cluster, from onset to about 280ms, for the neural network
predictor: recall that the cluster method isn’t meant to ෽ind precise on‐
set and offset; in any case because the experiment was organized by
blocks of identical shapes, so it is not entirely surprising that the onset
is so early. No smoothingwas applied here. There are also two clusters
for the symbolicmodel, unfortunately separated unless thresholds are
changed or soothing is applied even though they may look like they
are the same cluster. These clusters start around 200ms and last until
about 400ms.

The plot in Figure 2.5.A suggests that the correlation between the
twomodels impacts the estimation of the coef෽icients, as the estimates
appear negatively correlated over time; to make sure that this does
not drive the effect we replicated this analysis but instead computed
separately thewhitened correlation distance between eachmodel and
the data and computed clusters on this distance. The results are es‐
sentially identical, with an early neural network cluster from onset to
about 300ms, p<.05, and a single symbolic cluster that spans the two
clusters identi෽ied with the ෽irst method, again with p<.05, see Figure
2.6.A

Instead of building clusters and statistics over participants, we also
performed bootstrap over theories: 1000 times, we shuf෽led the
dissimilarity matrix of the two models, and performed the regression
with the brain data. Then, for each shuf෽ling we averaged the coef෽i‐
cients across subjects, and for each time point we counted how many
shuf෽lings were above the predictions from the real model in order to
derive a non‐parametric p‐value. This does not in and of itself provide
clusters or correct for multiple comparison across time points, but
it yields signi෽icant time points that fall within the clusters identi෽ies
previously and supports the same conclusions, see Figure 2.6.B

Finally, it’s worth pointing out that very similar results were achieved
by deriving the dissimilarity matrix from the data not with the
crossnobis distance, but with other distances. More striking, similar
results were obtained by deriving the similarity matrix by the con‐
fusion matrix of decoders, see Figure 2.6.C. To do this we trained
independent decoders to discriminate all possible pair of shapes
from the data, once again using cross‐validation across runs, and
used the generalizing score as a confusion value: when the score is
close to chance, the shapes are hard to discriminate and have a low
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Figure 2.6: A. Modeling the dissimilarity separately; because the two models are not perfectly orthogonal,
we can see that the estimation of coefficients makes the time series slightly negatively correlated in Figure
2.5.A; to confirm that this unintended correlation does not drive the effect, we also compute the whitened
correlation distance between themodels and the data separately and report it in this figure. B. Bootstrap over
theories 1000 times we shuffled theories and performed the RSA analysis again. Each thin line represents a
possible shuffled outcome averaged over subjects, the main colored lines indicate the reference, non‐shuffled
outcome, and is in bold when the unshuffled RSA analysis is over .95 shuffled analyses. C. Using decoders to
derive the RSA Replication of Figure 2.5.A but where the RSA from theMEG data is derived using the confusion
matrix of many one‐versus‐one decoders.
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dissimilarity score; conversely shapes that are easy to tease apart for
the decoder are considered to be highly dissimilar. This differs from
the previous method because instead of the whole brain signal to be
used equally, the decoder might ෽ind localized difference to use when
discriminating between shape, and the location may be different for
different shapes. Still, the results are comparable to those obtained
with the crossnobis distance, but differ in the following ways: the
neural network cluster starts earlier, around 50ms before the onset,
and ends later at around 430ms, its coef෽icients reach as high as .9
indicating an excellent ෽it with the data. The symbolic cluster starts
earlier around 130ms, and also ends earlier around 360ms.

Thedifference observedwhenderiving dissimilaritymatrices from the
decoder might re෽lect its ability to weight sensors differently, instead
of correlating them all equally. As seen with the source‐space RSA
analysis, the two models are associated with spatially separated ar‐
eas, and are presumably therefore associated with different sensors.
At ෽irst sight the results are close to the straightforward RSA results,
with a strong, early visual effect, which then reduces while the sym‐
bolic model picks up for about 250ms. However, with this analysis the
visual model remains signi෽icant during this period, and even long af‐
ter. One possibility is that as the shapes are perpetually “zooming in”
on the screen, the visual areas are continuously re‐stimulated – though
less and less over time. The signal from the visual areas dampenswhen
compared to the general signal over time, but the decoder might still
be able to pick it upwhile it gets overshadowed by the symbolic model
otherwise.

Can we ෽ind the source of these effects spatially on the cortex? To an‐
swer this, on possibility would have been to perform a similar RSA
analysis as above, using searchlights on the source space. Instead, as
we had access to high resolution anatomical MRI for 19 out of all par‐
ticipants, we opted for a more precise method and turned to source
reconstruction. For each participant, each shape and each run, we per‐
formed source reconstruction over 1026 sources spaced on each hemi‐
sphere. Then, for each source, we took the set of sources less than
2cm away on the cortex’s surface, and computed the dissimilarity be‐
tween shapes, cross‐validated over runs for the crossnobis distance.
This gives us, in each participant’s space, each source, and each time
point, a dissimilarity matrix across shapes.

Then, for each source, each time point and each subject, we modeled
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the dissimilarity matrix as a linear combination of our two models,
by minimizing the whitened correlation distance. This gives use two
spatio‐temporal dataset per subject, one for each model. For each
model, we can then project the spatio‐temporal information into a
shared, average subject cortical space. Computing spatio‐temporal
cluster on this data was very computationally expensive and prone
to spurious results as the clusters ended up spanning over the entire
duration of the epoch and moving all over the brain. To make the
resultsmore stable and interpretable, we removed the time dimension
by averaging over the periods that were part of signi෽icant clusters
in the strictly temporal analysis: this gave us one time period for the
neural network, and two periods for the symbolic model, in which to
search for signi෽icant spatial clusters.
The results are displayed Figure 2.5: for the neural network model’s
cluster, and for the ෽irst symbolic model’s cluster, we found signi෽icant
spatial cluster in source space at the p<.05 level. Note that despite the
use of information from a previous analysis, this does not constitute
double‐diping, as evidenced by the fact that the second symbolic clus‐
ter did not yield a signi෽icant spatial cluster in source space. Instead,
this allows us to answer the question: when a certain effect emerges,
is spatially stable and well de෽ined across subjects? And we ෽ind that
it is indeed the case. The neural network model’s two clusters cor‐
respond to bilateral occipital areas, while the symbolic model’s two
cluster span a much broader area, spanning over the dorsal pathways
bilaterally, with a hotspot anterior on the middle temporal gyrus and
another one on the right hemisphere around the middle frontal gyrus.

Discussion

The decoding results offer an interesting replication of the explicit in‐
truder task of chapter 1 in a purely passive shape‐perception context.
Since sitting in the MEG room for almost an hour looking at shapes
without a task isn’t engaging, it is quite likely that the structure of the
oddball paradigm became apparent to subjects and they sought the
oddballs proactively; nevertheless, this result indicates that our previ‐
ous ෽indings on visual search and intruder tasks were not restricted to
the experimental conditions.
The fact that a decoder trained blindly on all shapes has better than
chance performance even on the most irregular shapes indicates that
it’s possible to ෽ind a single dimension over which reference shapes
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Figure 2.7: Illustration of how shapes (reference in green, deviants in red) can (in A) and cannot (in B) be
organized around the decision boundary. In A, a shape and its deviant are organized symmetrically around
an axis, which can be used as a shared decision boundary to discriminate oddballs across shapes. Given all
shapes, finding the boundary is easy, but given only the most irregular shapes, finding it is hard. In B, shapes
are organized directly along the geometric regularity axis. As a consequence, the deviants of the square are
“more regular” than the reference of the irregular shape. There is no shared boundary for all shapes, but for
each shape it should be possible to find the boundary – though it would still be harder for irregular shapes, as
the translation along the axis becomes smaller. Our decoding results suggest an organization similar to A.

and oddballs differ. The existence of a gradient in performance as a
function of geometric regularities suggests that themore irregular the
shape, the closer it is to the cutoff boundary, making it harder to dis‐
entangle from an outlier: however, this suggests that the decision axis
is not simply the number of geometric regularities of the shape pre‐
sented, because deviants from the square featuremore regularity than
reference irregular shape. Therefore, the decoder must be able to ෽ind
a dimension that correlates with the change in geometric regularities
between the oddball and the surrounding shapes.

However, a decoder trained separately on the different shapes is not
able to perform better than chance for the most irregular shapes, indi‐
cating that even though the boundary exists in the data, looking only
at irregular does not allow for ෽inding a decision boundary, possibly
because more data would be required to ෽ind the boundary when the
points to separate are close together. The overall gradient of geomet‐
ric complexity remains, however, because the most regular shapes are
well decoded and form a gradient. We illustrate what this result entail
for the organization of geometric shapes in Figure 2.7.

The results from the RSA support the hypothesis of a two‐strategy sys‐
tem of geometric shape perception which we posited in chapter 1: a
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perceptual system, sharedwith other primates and possiblymore gen‐
erally, and a symbolic system speci෽ic to humans. We show that the
dynamic of the brain signal across shapes starts by resembling the pre‐
dictions made by the neural network model, which we have used as a
proxy for bottom‐up perceptual processing of the visual information.
The resemblance kicks in as early as the stimulus onset, presumably
helped by the block nature of the design, and lasts about 300ms. But at
around 200ms, the MEG signal looks like an equal mixture of the two
strategies, and from there onward the neural network models keeps
going downwhile the symbolicmodel remains predictive, until around
450ms. The two strategies therefore appear to be separated in time,
and follow a visual‐symbolic order. Thanks to source reconstruction,
we can also separate these two strategies in space: the visual strategy
corresponds to a well localized, bilateral occipital cluster, while the
symbolic strategy recruits amuch broader network, encompassing the
dorsal stream as well as frontal areas, again bilaterally.

This ෽inding also provides theories for why human and baboons (and
possibly other non‐humanprimates) behave systematically differently.
The two strategies build upon completely separated brain networks,
both in time and space, and two origins for the behavioral divergence
emerge. On the one hand, as baboons often try to answer much faster
than humans typically do, theymay use asmuch evidence as they have
accumulatedwhen they start answering but haven’t waited enough for
the symbolic elements to be computed, and therefore they only exploit
the visual strategy. Another, more likely possibility is that crucial el‐
ements of the symbolic network are simply not present in baboons:
either an ability for the detection of geometric properties, or an in‐
hibitory effect on the early response, or other top‐down action on the
occipital cortex.

2.3.3 Infants

The results presented here are preliminary and require more analysis,
and possibly more subjects, to be fully informative with regard to the
questions at hand. Nonetheless, they areworthpresenting as theyhelp
build a more comprehensive picture of the universality of perception
of geometric shapes in humans.
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Figure 2.8: Decoding results in the first group. A. Average ERPs across subjects of the contrast reference
vs. oddball. No significant spatio‐temporal cluster is present in this data. No significant spatio‐temporal clus‐
ter was found with non‐parametric permutation tests. B. Performance of a decoder discriminating reference
versus oddball stimuli. Each gray line is a participant (N=20), and the black line is the average performance.
No significant spatial cluster was found for non‐parametric permutation tests. C. Correlation between the
performance of the decoder tested separately on each shape, and the behavioral gradient of complexity ex‐
perimentally measured in chapter 1. Only participants with data for enough shapes are analyzed here: we
show the data for subjects who have seen at least 5 different shapes (N=10), and similar analysis have been
conducted for other threshold with identical results.

First Group Only

In trying to replicate the MEG results obtained in adults, we ෽irst
trained an identical decoder to discriminate between reference and
oddballs, with two folds to measure generalization score while trying
to maximize the training data available to the decoder. This decoder
does not perform better than chance as no signi෽icant time cluster
was found using non‐parametric permutation tests over all subjects:
the performance for each subject, as well as the average, are shown in
Figure 2.8.B.

Since the decoder still ෽luctuates around chance, we also tried to test
it separately for each shape, to see if the performance were different
across all shapes as we have shown to be the case in adults. Because
not all subjects have seen all 6 shapes, we tried restricting the data to
caseswhereparticipants have seen at least K shapes forK in [2,3,4,5,6];
however, in all cases, the correlation across shape for each time point
did not yield a signi෽icant cluster: Figure 2.8.C shows the results for
K=5which leads to 10 subjects. Often decoders are providedwith data
onlyminimally pre‐processed, howeverwe also tried providing the de‐
coder with reference averaged, baselined ([‐150, 0]ms window) and
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z‐scored data, the results were very similar.
We also tried to see if we could detect a difference in the evoked re‐
sponse potential (ERP) from reference and oddball stimuli by looking
at the grand average of the within‐participant differences, without us‐
ing a decoder. That average is presented in Figure 2.8.A, and there are
no signi෽icant spatio‐temporal cluster. For this analysis too, we tried
to baseline, reference average and z‐score the data, but the results are
identical.
This could be due to a number of reasons, including theoretical ones;
however, two methodological considerations are worth looking into.
First, the blocks were 60 shapes long, once per second, plus delays
introduced by occasional breaks: there are many babies for whom
we don’t have data for all shapes, making correlations even more
hazardous. Second, we often introduced breaks in the experiment,
either by switching to the face stimuli or with the soothing visual and
music distractors: this introduces breaks in the oddball paradigms,
that could lead to oddballs being, in fact, rather acceptable when
compared to other possible future stimuli. Both these design short‐
comings are due to an overly optimistic design, and lead to the second
iteration of the design described in the procedure section: deviants
were removed, blocks were much shorter, and we didn’t alternate
between shapes and faces anymore.

Both Groups

With both groups, it is not possible to analyze oddball anymore as they
were removed in the second group. However, we can still correlate
ERPs with our theoretical proposition of geometrical regularities for
the shape, and we can perform RSA analysis across different shapes.
Preliminary results from both groups are presented in Figure 2.9.
For the analyses in this section, a few additional preprocessing steps
were performed: (i) the datawas baselined during the [‐150,0]mswin‐
dow, (ii) the data was reference‐averaged, and (iii) each epoch was
centered and scaled, to avoid some participants dominating the data
in some analyses.
First, we performed a linear regression of the average ERP associated
with each geometric shape with the theoretical prediction of complex‐
ity, i.e. the number of symbolic properties, for each sensor and each
subject. The time courses of the intercept and the coef෽icient are pro‐
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Figure 2.9: Preliminary results with EEG in infants. A. Grand average of the intercept (top) and the beta
(bottom) in a linear regression of the geometric complexity of the shapes for each sensor, time point and
subject. B. Significant spatio‐temporal cluster (p=.039) identified across babies for the geometric complexity
regressor. Its topography is on the left, and the time course on the right. Note that this cluster spans the entire
duration of the epoch (0–1s). C. Time courses and significant temporal cluster (p<.05) in the modeling of the
dissimilarity matrix with our neural network and symbolic model.
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vided in Figure 2.9.A. The intercept corresponds loosely to the grand
average of the average across all stimuli together: it’s a cleaned version
of the average signal of what “seeing any shape” elicit in participants.
While the time courses for the geometric complexity seems to mainly
diverge, distancing from the baseline over time without much struc‐
ture, some effects were still systematic across subjects to be picked
up by a non‐parametric spatio‐temporal clustering analysis (p‐value
to enter a cluster: p<.05; number of bootstrapping folds 210, search
window: [0,1]s, ෽inal p‐value of the identi෽ied cluster: p=.039), pre‐
sented in Figure 2.9.B. They correspond to a group of central elec‐
trodes, and despite the apparent systematic divergence over time, (i)
that divergence was systematic enough across subjects for the cluster
to be signi෽icant, and (ii) a small return to baseline can be observed
from 500ms to 800ms, indicating that the drift is not simply due to ac‐
cumulating noise. A very similar cluster can be found when looking
only at the ෽irst group of infants (p<.049) but it does not come out as
signi෽icant in the second group alone.

Finally, we replicated the RSA performed in MEG in adults: for each
pair of shapes, each time point and each subject, we computed a
dissimilarity measure (for this analysis we used the “correlation”
distance: one minus the correlation of the topographies). Then for
each subject we measured the correlation between this dissimilarity
measure and the two models: the neural network model and the
symbolic model. Average across subjects of the time course are
provided in Figure 2.9.C, together with signi෽icant temporal clusters
(non‐parametric permutation tests, one tailed, over the [100, 500]ms
window, to try to replicate the clusters found in adults). The two time
courses are much noisier than in adults in MEG, and a signi෽icant clus‐
ter for the symbolic model barely comes out as signi෽icant, between
168ms and 246ms, p=.046; no cluster found for the neural network
model.

Discussion

The results in infants are not really conclusive yet, but the results pre‐
sented here are promising: there seem to be an effect of the shape pre‐
sented on the ERP, and the geometric complexity seem to indeed corre‐
late with some electrodes over time. Additionally, the RSA performed
provide a hint that the shapes are represented in a way that signi෽i‐
cantly correlates with the symbolic model during a period compatible
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with expectations from the adults MEG data.
However, each of these results suffers from instability. First, the tests
that can be performed separately on either group don’t replicate
straightforwardly. Second, while we ෽ind a reasonable temporal
cluster for the symbolic model, it is a bit surprising that we don’t
෽ind one for the neural network model, which we might expect to be
part of bottom‐up perception and therefore more precocious. Finally,
while the choice of dissimilarity measure for RSA in adults’ MEG data
did not really impact the result beyond few milliseconds shifts in the
resulting signi෽icant clusters, the same does not hold true for the EEG
data in babies, where choosing metric impacts greatly the resulting
time courses.
More generally, the two groups of infants present slightly different
overall responses (e.g. the grand average of all shapes), despite the
stimuli being identical. For example, without applying a baseline it
is possible to use the ෽ixation cross to identify a supposedly constant
visual response across shapes: doing so yield close but no‐overlapping
set of electrodes between the two groups. Current analyses do not
model these differences, but it appears possible that the changes
introduced between the two experiments impacted the responses
more than anticipated. The absence of oddballs, in particular, makes
the task introspectively different for adults, since after a few presenta‐
tions they know what shapes are coming next for a consistent period
of about 15 shapes, and unless paying special attention they lose
interest.
In ongoing work, we are reusing analyses performed in adults’ MEG
by using a decoder to construct the dissimilarity matrix instead of the
current correlation measure, to make the RSA more sensitive. Future
workwill most likely requiremore data to stabilize the current results.
In particular, better understanding the differences between the two
groups should help adjudicate between the two versions of the experi‐
ments, in order to maximize the informativeness of future data collec‐
tion.

2.4 General Discussion

The evidence presented with these new experiments support our the‐
oretical claims from chapter 1: in humans, geometric shapes are per‐
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ceived using a symbolic strategy, which relies on exact properties and
coexists with an underlying perceptual strategy. The behavioral data
is both a replication of the predictive power of the symbolic model ver‐
sus the perceptual model in explicit, intentional decision‐making; fur‐
thermore, usingmulti‐dimensional scaling, we get purely data‐derived
dominant characteristics of the behavior, which we can then con෽irm
to map onto our theoretically motivated symbolic model.

The MEG data makes it clear that deviants of regular shapes are more
easily detected than those of irregular shapes, even in the absence of a
task. This is yet another replication of themain effect I shed light on in
chapter 1, perhaps unsurprising given its effect size, but certainlywel‐
come. More importantly, the data lets us explore the spatio‐temporal
dynamic of the phenomenon, by contrasting two confusion matrices:
one stemming from perceptual properties of the shapes, and the other
from symbolic properties. We con෽irm the hypothesis that in humans,
at least two strategies coexist for tacking tasks involving recognizing
geometric shapes, and additionally we separate them both temporally
(the perceptual precedes the symbolic) and spatially (mostly occipital
versus dorso‐frontal).

In trying to replicate these analyses, there was a hope to determine
whether infants already display symbolic processing of the geomet‐
ric shapes, to further understand how universal geometric shape per‐
ception is in humans. The results we get, however, are on the fence
about this particular question, and additional analyses, and possibly
additional data, will be required to adjudicate. Still, results so far are
promising: different shapes do seem to systematically produce differ‐
ent ERPs, andwe ෽ind a signi෽icant clusterwhenwe analyze those ERPs
as a function of geometric shape regularity for a cluster of central elec‐
trodes. Furthermore, the RSA suggests that the mental representation
of shapes is compatible with the symbolic model during a period com‐
parable towhatwas identi෽ied in adults, although the same result does
not hold true for the neural network model.

Infants can be habituated to simple geometric ෽igures (Schwartz et al.,
1979) and even abstract over global rotation changes. (Schwartz et
al., 1979) provide evidence that infants are more attentive to local an‐
gles composing a shape than to its global orientation, and that they
might use local information about angles to encode the entire shape
but do not seem to process higher‐order relationships between seg‐
ments. This is a limiting factor for experiments involving quadrilater‐
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als; however, in the case of our shapes even processing local angles
alone should already give rise to the gradient of geometric complexity
observed in adults.
On the other hand, using preferential looking, (Dillon et al., 2020)
shows that 7‐month‐old infants detect changes in shape using tri‐
angles, with a very fast presentation rhythm. But that study ෽inds
that the dominant factor appears to be the relative lengths rather
than the angles, at least when abstracting over rotation and scale is
required. An important argument put forward for this difference is
that angles, as a relation between directions, might be computedmore
slowly than lengths, pushing its computation beyond the presentation
threshold of that experiment. Could the same phenomenon occur
with our geometric shapes, where relations between relations need
to be computed, making the presentation time too fast for infants?

2.5 Conclusion

In this work, we decompose the temporal, and to a lesser extent the
spatial, dynamic unfolding of simple geometric shape perception in hu‐
mans. Using a set of minimally different quadrilateral shapes, with a
varying number of geometric properties, we identify a double dissoci‐
ation when perceiving geometric shapes which we had posited from
earlier modeling of the behavior.
This provides more insight as to why non‐human primates may lack
the symbolic strategy. Indeed, the strategy associated with the neural
network, which was a good model of all baboons, correlates with
an early occipital response, which contains areas that have close
functional homologous across non‐human primates (Orban et al.,
2004; Tootell et al., 1996). On the other hand, the strategy associated
with symbolic processing spans a very broad network of the brain,
including strong dorsal and frontal bilateral activations. The speci‐
෽icity of source reconstruction appears to limit accurate localization
of the effects. However, the areas identi෽ied make sense: while the
historical view is that the prefrontal cortex is disproportionately large
in humans when compared to other non‐human primates (Deacon,
1998; McBride et al., 1999) is challenged from a methodological
standpoint (Semendeferi et al., 2002; Sherwood & Smaers, 2013),
there is no doubt that it is at the center of many neuroscienti෽ic
inquiries when contrasting humans versus other animals.
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The temporal dissociation is important as well: baboons tested in
chapter 1 tend to answer faster than humans, a general strategy
they employ to maximize reward through the number of trials if not
their success. Given that some perceptual strategy is enough to do
marginally better than chance – though not by much – baboons may
reply as soon as the visual information is available to reply, which
would over‐emphasize the reliance on the visual strategy that is
available sooner. Assuming visual timing consistent with humans,
this wouldn’t quite account for the data, as the average response time
of the baboons averaged at 1600ms, therefore arriving much later
than the peak of the predictiveness of the neural network strategy at
around 180ms.
In summary, the present results strengthen the ෽indings that there
are two strategies for geometric shape perception and sheds light on
the neural mechanisms at the root of this dissociation. They hint at
plausible accounts of what drives the divergence between human and
non‐human primates while not fully explaining it. The next chapter
will focus on amore accurate localization of the effect discovered here,
using fMRI in both adults and children. Future work should explore
recordings of the brain activity of primates undergoing a similar
oddball paradigm
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Chapter 3

Geometric shape perception activates brain
regions associated to mathematical cognition:
an fMRI study

Abstract

Is geometry closer to mathematics, language, or general vision?
In this work, we provide elements to answer this question by
using functional MRI in adults and children to look at the brain
networks involved in two tasks involving geometric shapes. We
෽ind that passively viewing geometric shapes, when compared
to other visual categories, over‐activates areas typically associ‐
ated with number cognition and mathematical cognition, while
under‐activating the ventral stream of visual information pro‐
cessing. We also ෽ind that a vast brain network increases in activ‐
ity together with the dif෽iculty of an intruder detection task us‐
ing geometric shapes, but only in adults and when the dif෽iculty
is moderate; furthermore, we ෽ind that the organization of the
mental representation of the different shapes can be separately
modeled using a symbolic model and a neural networkmodel of
object recognition, with areas associated with either separately,
and to both.
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3 Shape perception and the cortical circuits for mathematics using fMRI

“I.Def.1: A point is that which has no part
I.Def.2: A line is breadthless length.
I.Df.3: The ends of a line are points.”

Euclid’s Elements

3.1 Introduction

No specie other than humans has gained access to abstract, mathe‐
matical concepts. The origins of this ability are much debated, but
recent work (Amalric & Dehaene, 2016) has shown a dissociation of
high‐level mathematics from typical language networks, suggesting a
distinct set of neuronal populations that can deal with the concepts
required for mathematics.
Is mathematics a byproduct of the capacity for language – a hypothe‐
sis introspectively disfavored by mathematicians and physicists? This
hypothesis has received indirect empirical support in severalways: no‐
tably because language plays a signi෽icant role in the development of
spatial reasoning (Pyers et al., 2010), and because deaf individuals
who did not learn a conventional language have a harder time manip‐
ulating exact numbers (Hyde et al., 2011; Spaepen et al., 2011, 2013).
On the other hand, recent neuroimaging studies ෽ind a systematic dis‐
sociation between language networks and math networks (Amalric &
Dehaene, 2016, 2017). In the speci෽ic case of geometry, in addition
to the results presented in chapter 1 which suggest that natural lan‐
guage is not the main constituent of the geometric regularity effect, it
has been shown that even infants and adults without formal Western
education possess intuitions about number, space, and geometry (De‐
haene et al., 2006; Pica et al., 2004). Furthermore, infants have been
shown to be able to solve geometric tasks without being able to pro‐
vide a justi෽ication for their decisions, either through language or ges‐
ture (Calero et al., 2019)
A possible reconciliation of this tension could come from language as
a mechanism to integrate different “core knowledge” together, an idea
proposed in (E. S. Spelke, 2003). Under that view, core knowledge
domains would provide the essential building blocks from which hu‐
mans could construct more and more complex representation using
language as construction tools, building up through analogies and in‐
ductive processes (Hofstadter & Sander, 2013; Lakoff & Núñez, 2000)
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that rely on the ability to represent different objects with a shared
medium: natural language.
Using both an fMRI version of our intruder task introduced in
chapter 1, with quadrilateral shapes, and new geometric stimuli
in a standard functional localizer, we set out to investigate whether
simple geometric shapes, either passively perceived or involved in
an active discrimination task, activate networks associated primarily
to either mathematics, language, or vision. Furthermore, we tried
to understand whether this association changed with education by
comparing adults and kindergartners.

3.2 Method

3.2.1 Participants

Twenty healthy French adults (9 females; 19‐37 years old, mean: 24.6
years old, SD: 5.2 years old) and 25 French ෽irst graders (13 females;
all were 6 years old) participated in the study. Three children quit the
experiment before the formal task began because they did not like the
scanning noise or lying in the con෽ined space. All participants had nor‐
mal hearing, normal or corrected‐to‐normal vision, and no neurologi‐
cal de෽icit. All adults and guardians of children provided informed con‐
sent, and adult participants were compensated for their participation.

3.2.2 Materials

Category Localizer

Grayscale images of eight categories were presented to the partic‐
ipants (Figure 3.1). The categories included faces, houses, tools,
single‐digit formula, French words, Chinese characters, single geo‐
metric shapes, and three geometric shapes displayed in a row. Each
category had 20 exemplars. All faces, 16 houses, and 18 tools have
been used in previous localizer experiments (Zhan et al., 2018).
For face stimuli, front‐view neutral faces (20 identities, 10 males)
were selected from the Karolinska Directed Emotional Faces database
(Lundqvist, Flykt, & Oഽ hman). The stimuli were aligned by the eyes
and the iris distances. A circular mask was applied to exclude the hair
and clothing below the neck. House and tool stimuli were royalty‐free
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Figure 3.1: A. Stimuli and method of the category localizer. On the left are the 8 categories used in the
localizer, as well as the start participants had to detect. An example of a mini‐block is shown on the right,
with faces and a start inserted to be detected. B. Stimuli and method of the geometry task. On the top we
display the 8 possible shapes used in the geometry task, as well as an example of theway outliers were devised.
Belowwe show to trial examples, in both cases the outlier shape is on the lower‐left position (participants had
to answer “left”), one with the “rectangle” shape and one with the “random” shape.
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3.2. METHOD

images obtained from the internet. House stimuli were photos of 2 to
3‐story residence houses. Tool stimuli were photos of daily hand‐held
tools. Half of the images were horizontally, so that there were 10
images in a position graspable for the left and right hand respectively.
For French word stimuli, 3‐letter French words were selected which
were known to ෽irst graders and had high occurrence frequencies
(range=7‐2146, mean=302, SD=505 occurrences per million based
on Lexique, http://www.lexique.org/). Chinese characters were
selected from the school text book of Chinese ෽irst graders. The word
frequency (range=11‐1945, mean=326, SD=451 occurrences per
million; (Cai & Brysbaert, 2010)) was not signi෽icantly different from
French words used here (t(38)=0.2, p=0.87).
Single‐digit formula stimuli were 3‐character simple operations in the
form of “x±y” with x greater than y, x ranging from 2 to 5, and y from 1
to 4. Single shapes consisted in a single, centered outline of a geometri‐
cal shape, either circles, quadrilaterals or triangles, andwere compara‐
ble with faces/houses/tools/Chinese characters which also displayed
single objects. A row of shapes consisted of three different shapes side
by side whose total width, size, and line width were adjusted to match
other stimuli size, and were supposed to be comparable with 3‐letter
French words and 3‐character single‐digit operations.
To match the appearance of the monospaced font in (Vinckier et al.,
2007), the monospaced font Consolas was used for the French words
and numbers, with identical font weight 900. The font for Chinese
characters were Heiti, which looks similar to Consolas. Random font
sizewas used to achieve similar variability aswith the other categories.
The stimuli were embedded in a gray circle (RGB color=157, 157, 157,
radius=155 pixels), on the screenwith a black background. Within the
gray circle, themean luminance and contrast of the8 stimuli categories
were controlled not to be signi෽icantly different from each other (lumi‐
nance: F(7,152)=0.6, p=0.749; contrast: F(7,152)=1.2, p=0.317, see
Figure 3.2).

Geometry Task

Geometric shapes were generated following the procedure described
in (Sablé‐Meyer, Fagot, et al., 2021). To ෽it the experiment in the time
constraints, a subset of shapes was used: the square, rectangle, isosce‐
les trapezoid, rhombus, right hinge and random for the easy condition,
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Figure 3.2: A. Controls on the luminance and contrasts of the localizer stimuli. Top: average distribution
of means and std pixel values across categories in the localizer. Bottom: average stimuli in each category, and
superposed stimuli in each category.
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with additionally the parallelogram and the obtuse kite for the hard
condition (SeeFigure3.1). Following (Sablé‐Meyer, Fagot, et al., 2021)
deviants were generated by displacing the bottom right corner by a
constant distance in four possible positions: that distance was a frac‐
tion of the average of all pairs of points, whichwas standardized across
shapes, andwas either .45 for the easy condition, or .3 whichwas used
in (Sablé‐Meyer, Fagot, et al., 2021) for the hard condition.

In each trial, six gray‐on‐black (shape color rgbvalues: (127,127,127)),
and shapes were displayed in two semicircles. The positions were de‐
termined by positioning the three leftmost (resp. rightmost) shapes
on the left side (resp. right side) of a circle of radius 120px, at angles
0, pi/2 and pi, and then shifting them 100px to the left (resp. right).
The rotation and scaling of each shape were randomized so that no
two shapes had the same scaling or rotation factor, and values were
sampled in [0.875, 0.925, 0.975, 1.025, 1.075, 1.125] for scaling and
[‐25°, ‐15°, ‐5°, 5°, 15°, 25°] for rotations, avoiding 0° to prevent exces‐
sive alignment of speci෽ic shapes to screen borders. One of the shapes
was an outlier, whose position was sampled randomly and uniformly
in all six possible positions, but so that no two consecutive trials fea‐
tured outliers in the same position. Outliers were sampled in the four
possible types of outliers, so that all outliers occurred as often but no
two consecutive trials featured identical outlier type.

3.2.3 Experimental Design and Procedure

Category Localizer

The eight categories were presented in blocks of 6s, fully randomized
for block presentation order, with the restriction that there were no
consecutive blocks from the same category. Stimuli presentation order
within a blockwere also randomized. Each stimuluswas presented for
1s, with no interval in between (Dehaene‐Lambertz et al., 2018). The
inter‐block interval was jittered for 4, 6, or 8s (mean = 6s). Each of
the eight block types was presented for twice within each run. Partic‐
ipants were asked to keep ෽ixating on a green central ෽ixation dot (ra‐
dius=8pixels, RGB color=26, 167, 19, always shownon the screen), and
to press the right‐hand buttonwhen a star symbol was presented. The
star spanned roughly the same visual angle as the eight categories, and
were randomly presented once in one of the two blocks per category,
between the 3rd to the 6th stimuli within that block. Three hundred
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milliseconds of 650HzBeep soundwasprovided as the audio feedback
associated with the button press. A 6s ෽ixation period was included at
both the beginning and the end of the run. Each run lasted for 3min
24s, and participants performed three runs of this task in the fMRI ses‐
sion.

Geometry Task

The shapes were presented in blocks, fully randomized for block pre‐
sentation order with no two consecutive blocks with the same type of
shape. Runs of the easy condition always lasted 3m40s, and blocks of
the hard condition always lasted 6m58. In the easy condition, blocks
of 5 identical base shapes were used in a row, with 2s of presentation,
2s to answer. In the hard condition, shapes were ෽lashed for 200 ms,
with 4s to answer, and a 4s mini‐pause mid‐block. In both conditions
there was a 4s, 6s or 8s delay between blocks. A central green ෽ixation
cross was always on display, and it turned bold 600 ms before a block
would start. After each answer auditory feedback was provided.

3.2.4 MRI Acquisition

MRI images were acquired on a 3T Siemens Prisma scanner. Func‐
tional EPI images were scanned covering whole brain with following
parameters: TR=1.81s, TE=30.4ms, ෽ield of view=864x864, ෽lip
angle=71 degrees, resolution=2x2x2mm, multiband factor=3, phase
encoding direction: posterior to anterior. Anatomical T1 weighted im‐
ages were acquired using following parameters: TR=2.3s, TE=2.98ms,
෽ield of view=240x256, ෽lip angle=9 degrees, resolution=1x1x1mm. In
addition, spin‐echo ෽ield maps were collected. Single‐band reference
images were also collected before each functional run. Each fMRI
session lasted for around 50 min for children including (by order)
runs of a task not discussed in the present article, 3 Category localizer
runs, T1 collection, and 2 easy geometry tasks. For adults, the session
lasted for around 1h 20min with the same runs as for children, as well
as 2 additional hard geometry task.

3.2.5 Imaging Data Preprocessing

The following section was automatically generated by fMRIPrep.
Results included in this manuscript come from preprocessing
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performed using fMRIPrep 20.0.5 (Esteban, Blair, et al., 2018; Es‐
teban, Markiewicz, et al., 2018), which is based on Nipype 1.4.2 (K.
Gorgolewski et al., 2011; K. J. Gorgolewski et al., 2018).

Anatomical Data Preprocessing

The T1‐weighted (T1w) image was corrected for intensity non‐
uniformity (INU) with N4BiasFieldCorrection (Tustison et al.,
2010), distributed with ANTs 2.2.0 (Avants et al., 2008), and used
as T1w‐reference throughout the work෽low. The T1w‐reference
was then skull‐stripped with a Nipype implementation of the ants‐
BrainExtraction.sh work෽low (from ANTs), using OASIS30ANTs
as target template. Brain tissue segmentation of cerebrospinal ෽luid
(CSF), white‐matter (WM) and gray‐matter (GM) was performed on
the brain‐extracted T1w using fast (FSL 5.0.9, Zhang et al., 2001).
Brain surfaces were reconstructed using recon‐all (FreeSurfer 6.0.1,
Dale et al., 1999), and the brainmask estimated previouslywas re෽ined
with a custom variation of the method to reconcile ANTs‐derived and
FreeSurfer‐derived segmentations of the cortical gray‐matter of Mind‐
boggle (Klein et al., 2017). Volume‐based spatial normalization to two
standard spaces (MNI152NLin6Asym, MNI152NLin2009cAsym) was
performed through nonlinear registration with antsRegistration
(ANTs 2.2.0), using brain‐extracted versions of both T1w reference
and the T1w template. The following templates were selected for
spatial normalization: FSL’s MNI ICBM 152 non‐linear 6th Generation
Asymmetric Average Brain Stereotaxic Registration Model (Evans et
al., 2012) and ICBM 152 Nonlinear Asymmetrical template version
2009c (Fonov et al., 2009).

Functional Data Preprocessing

For each of the 10 BOLD runs found per subject (across all tasks and
sessions), the following preprocessing was performed. First, a refer‐
ence volume and its skull‐stripped version were generated using a
custommethodology of fMRIPrep. Susceptibility distortion correction
(SDC) was omitted. The BOLD reference was then co‐registered to
the T1w reference using bbregister (FreeSurfer) which implements
boundary‐based registration (Greve & Fischl, 2009). Co‐registration
was con෽igured with six degrees of freedom. Head‐motion parameters
with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) are estimated be‐
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fore any spatiotemporal ෽iltering using mcflirt (FSL 5.0.9, Jenkinson
et al., 2002). BOLD runs were slice‐time corrected using 3dTshift
from AFNI 20160207 (Cox & Hyde, 1997). The BOLD time‐series
(including slice‐timing correction when applied) were resampled
onto their original, native space by applying the transforms to correct
for head‐motion. These resampled BOLD time‐series will be referred
to as preprocessed BOLD in original space, or just preprocessed BOLD.
The BOLD time‐series were resampled into several standard spaces,
correspondingly generating the following spatially‐normalized, pre‐
processed BOLD runs: MNI152NLin6Asym, MNI152NLin2009cAsym.
First, a reference volume and its skull‐stripped version were gener‐
ated using a custom methodology of fMRIPrep. Several confounding
time‐series were calculated based on the preprocessed BOLD: frame‐
wise displacement (FD), DVARS and three region‐wise global signals.
FD and DVARS are calculated for each functional run, both using their
implementations in Nipype (following the de෽initions by Power et
al., 2014). The three global signals are extracted within the CSF, the
WM, and the whole‐brain masks. Additionally, a set of physiological
regressors were extracted to allow for component‐based noise cor‐
rection (CompCor, Behzadi et al., 2007). Principal components are
estimated after high‐pass ෽iltering the preprocessed BOLD time‐series
(using a discrete cosine ෽ilter with 128s cut‐off) for the two CompCor
variants: temporal (tCompCor) and anatomical (aCompCor). tComp‐
Cor components are then calculated from the top 5% variable voxels
within a mask covering the subcortical regions. This subcortical
mask is obtained by heavily eroding the brain mask, which ensures
it does not include cortical GM regions. For aCompCor, components
are calculated within the intersection of the aforementioned mask
and the union of CSF and WM masks calculated in T1w space, after
their projection to the native space of each functional run (using the
inverse BOLD‐to‐T1w transformation). Components are also calcu‐
lated separately within the WM and CSF masks. For each CompCor
decomposition, the k components with the largest singular values are
retained, such that the retained components’ time series are suf෽icient
to explain 50 percent of variance across the nuisance mask (CSF, WM,
combined, or temporal). The remaining components are dropped
from consideration. The head‐motion estimates calculated in the
correction step were also placed within the corresponding confounds
෽ile. The confound time series derived from head motion estimates
and global signals were expanded with the inclusion of temporal
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derivatives and quadratic terms for each (Satterthwaite et al., 2013).
Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised
DVARS were annotated as motion outliers. All resamplings can be
performed with a single interpolation step by composing all the
pertinent transformations (i.e. head‐motion transform matrices, sus‐
ceptibility distortion correction when available, and co‐registrations
to anatomical and output spaces). Gridded (volumetric) resamplings
were performed using antsApplyTransforms (ANTs), con෽igured
with Lanczos interpolation to minimize the smoothing effects of other
kernels (Lanczos, 1964). Non‐gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).
Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et
al., 2014), mostly within the functional processing work෽low.

3.3 Results

For all runs, analyses were performed using nilearn version 0.9.0
(Abraham et al., 2014). GLM were ෽itted with polynomial drift orders
(up to degree 5), high pass at .01 Hz, smoothing at 4mm, nilearn’s
implementation of the SPM Hemodynamic Response Function, a
second order autoregressive noise model, and signal was scaled to
percent of signal change (time series are shifted to zero mean value
and scaled to percent signal change). No slice time correction was
applied as this step was included in the the preprocessing pipeline.

3.3.1 Category Localizer

Results

In the category localizer, the GLM design matrix featured a predictor
for each stimulus in the 8 categories coded as a 1s event, plus a predic‐
tor for the star, 1s event, and a predictor for button presses as 200 ms
events, aswell as a constant plus ෽ive polynomial drifts. From fmriprep
we additionally used three translation predictors and three rotation
predictors, a cerebrospinal ෽luid and a white‐matter predictor. Finally,
we added ෽ive predictors associatedwith the highest percentile of vari‐
ance in the data, following nilearn’s implementation of CompCor (Be‐
hzadi et al., 2007).
Clusters were identi෽ied by thresholding contrasts of the second level
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Figure 3.3: First level contrast: shape > single element. A Thresholded contrast map projected on surface
average. For both age groups, we display the second level, 8mm smoothed contrast map associated with the
“shape alone” > 1/3 “face + house + object”, thresholded so that p<.0001 uncorrected. B. GLM coefficients
per cluster for each cluster in the adult group (see Table 1), we display the coefficients associated with the
regression for both age groups, with error bars corresponding to standard error of the mean. Colors indicate
the category, and the number correspond to A and Table 3.1. Note that while in Table 3.1, significant clusters
were selected and evaluated within age group, i.e. “cluster 1” is slightly different in both groups, in this plot
the clusters from the adults were used. C. Thresholded contrast map as in A, with equidistant spaces on the
z‐axis in MNI space.

132



3.3. RESULTS

(smoothed at 8mm following (Mikl et al., 2008), p<.0001 uncorrected).
The statistical signi෽icance of clusters was then assessed by bootstrap:
for 10k iterations, the sign of the ෽irst level contrast map of each par‐
ticipant was randomly swapped and the weight of the biggest cluster
for this particular shuf෽lingwas recorded (where theweight is the sum
of the t‐values of the cluster). From this we derived p‐values of each
cluster from the real data by comparing its weight to the distribution
of random clusters.
First, we study the contrast “shape alone > 1

3×(face + house + objects)”,
where we compare the processing of single shapes with the process‐
ing of other categories featuring a single item. Figure 3.3 shows the
thresholded t‐map for both age groups, and in Table 3.1 we report
signi෽icant clusters identi෽ied by bootstrap. For both age groups, the
two most dominant clusters are symmetrical ventral pathways. Both
reach signi෽icance through bootstrapping, and yield negative statistics,
indicating that shapes are dominated by the other categories. There
are also symmetrical, positive clusters in both age groups inside the
Intra Parietal Sulcus (IPS): in the right hemisphere it reaches signi෽i‐
cance in bootstrap for both age groups, but only reaches signi෽icance
for 6 years old in the left hemisphere. Finally, a cluster was found
in both age groups in the right Inferior Temporal Sulcus, although it
reached signi෽icance only for the adult population. Interestingly, in the
left hemisphere, the IPS clusterwas also strongly activated by our num‐
ber stimuli in adults (but not in 6 years old), a feature partly observed
in the right hemisphere IPS as well, but not in the more ventral cluster
(see Figure 2B). The contrast “Single shape + Three shapes > 1

2×(face
+ house + tool + text)” yields very similar results.
Table 3.1: Location, strength and significance of clusters for both age groups for the
contrast shape alone > 1

3 (face + house + object). Locations are given inMNI coordinates.
We report all 5 clusters identified as significant in either group. Lists of clusters fromeach
age group didn’t perfectly overlap but there was always a straightforwardmapping from
one to the other. P‐values derived by bootstrap. Cluster ID corresponds to the numbers
used in Figure 3.3, with subpeaks and associated t‐values identified within each cluster.

Cluster Sub peak MNI (x, y, z) Peak t Size (mm³) Weight p‐value

1 a (‐50.5, ‐34.5, 41.5) 4.56 424 220 .517
2 a (35.5, ‐48.5, 55.5) 6.68 7112 4110 .0044

b (59.5, ‐22.5, 39.5) 6.11
c (43.5, ‐34.5, 47.5) 6.05
d (51.5, ‐26.5, 41.5) 5.94

3 a (51.5, ‐56.5, ‐6.5) 8.38 3840 2370 .013
b (45.5, ‐64.5, 3.5) 6.8
c (37.5, ‐58.5, 7.5) 5.87
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Cluster Sub peak MNI (x, y, z) Peak t Size (mm³) Weight p‐value

d (39.5, ‐48.5, ‐0.5) 4.8
4 a (‐24.5, ‐104.5, ‐4.5) ‐8.99 38224 ‐25500 <.0001

b (‐34.5, ‐68.5, ‐10.5) ‐8.66
c (‐38.5, ‐54.5, ‐18.5) ‐7.71
d (‐40.5, ‐74.5, ‐14.5) ‐7.41

5 a (41.5, ‐76.5, ‐16.5) ‐9.53 55056 ‐37600 <.0001
b (33.5, ‐60.5, ‐14.5) ‐8.26
c (17.5, ‐106.5, ‐4.5) ‐8.05
d (23.5, ‐90.5, ‐10.5) ‐7.82

1 a (‐48.5, ‐48.5, 43.5) 7.86 8232 5060 .005
b (‐44.5, ‐38.5, 41.5) 6.81
c (‐48.5, ‐46.5, 57.5) 6.44

2 a (43.5, ‐34.5, 45.5) 6.35 7104 4100 .0078
b (55.5, ‐24.5, 45.5) 6.16
c (47.5, ‐26.5, 37.5) 5.29
d (41.5, ‐44.5, 59.5) 4.52

3 b (55.5, ‐64.5, ‐4.5) 4.63 472 245 .529
4 a (‐26.5, ‐98.5, ‐8.5) ‐9.66 49888 ‐32600 <.0001

b (‐34.5, ‐36.5, ‐22.5) ‐9.01
c (‐40.5, ‐68.5, ‐16.5) ‐8.27
d (‐32.5, ‐78.5, ‐12.5) ‐8.06

5 a (21.5, ‐96.5, ‐8.5) ‐10.6 36120 ‐24600 <.0001
b (27.5, ‐84.5, ‐14.5) ‐8.69
c (23.5, ‐46.5, ‐12.5) ‐6.41
d (35.5, ‐44.5, ‐22.5) ‐6.11

Considering now the contrast “Three shapes > words”, we ෽ind three
left lateralized, word‐dominant signi෽icant clusters in adults, signi෽i‐
cant with bootstrap. All three are fully absent in 6 years old. We ෽ind
again a right‐lateralized IPS cluster in adults, at a similar location as
with the previous contrast, but it is much smaller (peak t‐value 4.63,
size 112mm3, p=.84) and it is absent in 6 years old.
To understand better the ventral pathway situation, we com‐
puted four additional contrasts by pitting each category of
face/house/tool/words against the three others. We could check
that in almost all of the resulting clusters, there was a positive ac‐
tivation for shapes, but it was vastly dominated by the other visual
categories (see Figure 3.4).

Discussion

Taken together, these results show that geometric shapes activate
the typical ventral visual pathways less than other common visual
categories (but activate them nonetheless), while activating a bilateral
inferior parietal area more than the other categories. This result is
true across age groups, although two details are different: in adults,
the parietal activation is asymmetric, with a stronger activation on
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Figure 3.4: Inspecting a slice at z=‐14, with areas positively activated with the four contrasts obtained
by comparing face, house, tool or text against the three other categories, in both adults and six years old,
thresholded (uncorrected) at p<.0001, together with the average coefficients of the first level model at the
peak voxel of each category, in both hemispheres when applicable.

the right, while in children the activation is mostly symmetrical.
Conversely, in adults there is a signi෽icant cluster on the right inferior
temporal gyrus which is absent in children.
The results in adults coincide well with the ෽indings in (Amalric & De‐
haene, 2016) which found bilateral clusters at identical locations for
a math‐vs‐non‐math language‐based task, while providing evidence
that elements of this results hold already in six‐year‐old children.
More generally, our results ෽it with a broader literature on the neu‐
roimaging ofmathematics, although geometrywas rarely the center of
attention. On the one hand, the ventral area we identify has been asso‐
ciated with visually presented numbers (Hermes et al., 2017; Shum et
al., 2013) and has been referred to as “visual number form areas” (VN‐
FAs). On the other hand, intraparietal regions are active during many
number‐related tasks, including number‐processing/calculation (De‐
haene et al., 1999). These ෽indings lend support to the hypothesis ex‐
posed in (Lakoff & Núñez, 2000) that mathematics build upon many
different domains including numbers processing and geometric con‐
cepts, amongst others.
One caveat of this result, which we can address with our other task,
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3 Shape perception and the cortical circuits for mathematics using fMRI

is that the runs were not task‐less: participants were instructed to ac‐
tively wait for a star to appear to press a button, and a star is a par‐
ticular case of geometric shape so each shape might lead to a more
complex decision process than faces or houses. Given the block na‐
ture of the task, and the fact that the star was visually very different
from the geometric stimuli (very different contrast and luminance), it
is unlikely that this would drive the effect, but as the areas identi෽ied
coincide with areas identi෽ied in “multiple‐demand” systems (Duncan,
2010) andproblem‐solving tasks (Fedorenko et al., 2013), the increase
in activation could stem from participants paying more attention dur‐
ing the geometric shape blocks.

3.3.2 Geometry

Results

Chance level
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Figure 3.5: Top‐left: correlation between the behavior of participants inside the fMRI and the averaged
results for the same shapes in our online experiment of chapter 1, together with the r² and the p‐value as‐
sociated with the regression. Other: Linear, centered contrast of the geometric shapes, thresholded at the
p<.0001, uncorrected. Top‐right: adults, easy condition. Bottom‐right: adults, hard condition. Bottom left: 6
years old, easy condition.

Behavior.
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Table 3.2: ANOVAs of participants’ behavior inside the MRI. For both age groups, for
both tasks, we measured the effect of the shape on the error rates using an ANOVA.
We report both the statistics and the generalized eta‐square, an approximation of the
r‐squared for ANOVAs. There is always a significant effect, and its effect size ranges from
.25 to .48, with its lower value for 6 years old indicating a higher level of noise in their
behavior.

Statistic 𝜂2
G p‐value

Adults Easy F5,95=29.91 0.481 <.001
6 years old Easy F5,95=20.01 0.256 <.001
Adults Hard F7,133=21.34 0.469 <.001

First, we analyzed the behavioral responses inside the MRI. For both
age groups and dif෽iculty levels, there was a signi෽icant effect of the
shape on the error rates, which came out as signi෽icant in three sep‐
arate ANOVAs (see Table 3.2). What is more, within the “easy” dif෽i‐
culty level, we ran anANOVAwith shapes aswithin‐participant factors,
and the age group as a between‐participant factor: there were signif‐
icant effects of both factors (shapes: F5,190=44.73, 𝜂2

𝐺=.308, p<.001;
age group F1,38=13.64, 𝜂2

𝐺=.183, p<.001) but no interaction between
the two (F5,190=1.30, 𝜂2

𝐺=.013,p=.27).
This can also be visualized and analyzed by computing the correla‐
tion of the behavior inside the MRI with the data obtained in a pre‐
vious study using a similar paradigm, in N=117 adults tested online.
The three independent correlations are displayed in Figure 3.5 on the
top left, together with the associated statistics: each correlation is al‐
ways signi෽icant and the slopesof the regressions are virtually identical
and not signi෽icantly different across age groups and dif෽iculty. Addi‐
tionally, the ordering follows the expectations with the easy condition
yielding better performance than the hard condition, and the adults
having better performance than the six‐year‐old participants. Note
that the chance levels inside the scanner and outside the scanner are
very different (one‐in‐two inside the fMRI, one‐in‐six for the online ex‐
periment).

Linear Contrast. To see which brain areas had an increased activity
associated with an increase in geometric shape regularity, we com‐
puted a linear contrast of the betas associated with each shape using
the weights of the participants’ behavior inside the scanner. This way,
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3 Shape perception and the cortical circuits for mathematics using fMRI

positive t‐values indicate areas inwhich the activity increaseswith the
error rate, and therefore the complexity of the shape, and negative t‐
values indicate areas where the activity decreases with the error rate.
Maps of these contrasts, thresholded at the p<.0001 level uncorrected,
are provided in Figure 3.5, and information about signi෽icant clusters
after bootstrap analysis are provided in Table 3.3.
Table 3.3: Location, size and significance of clusters for both age groups for the centered
linear contrast of the geometric shapes. Locations are given in MNI coordinates. We
report all clusters identified as significant at the p<.05 level in any condition, p‐values
are computed with non‐parametric bootstrap like in Table 3.1

Condition Coords (x, y, z) Peak t‐value Size (mm³) p‐value

Adults, easy (‐34.5, ‐96.5, 1.5) 12.1 181408 <.0001
(29.5, 31.5, ‐0.5) 11.2 111984 <.001
(‐38.5, 5.5, 33.5) 9.65 38448 .0011
(‐38.5, ‐74.5, ‐54.5) 7.72 10320 .0176
(13.5, ‐14.5, 15.5) 5.51 7784 .0354
(37.5, ‐12.5, 25.5) ‐6.9 10168 .0198
(17.5, ‐40.5, 81.5) ‐6.77 45776 .0011
(5.5, ‐50.5, 27.5) ‐6.64 23080 .0043
(‐14.5, 73.5, 7.5) ‐6.07 14216 .0116
(‐18.5, 33.5, 39.5) ‐5.69 6224 .0475
(‐46.5, ‐78.5, 49.5) ‐5.53 8464 .0309

Adults, Hard (45.5, ‐76.5, ‐38.5) ‐6.5 2136 .0298
(‐20.5, 33.5, 55.5) ‐6.31 3408 .0152
(‐48.5, ‐70.5, 33.5) ‐5.55 2720 .0221
(‐6.5, ‐40.5, 41.5) ‐5.28 2080 .0352

6 y.o., Easy (‐2.5, 63.5, ‐14.5) ‐6.15 1848 .0305

There are several very signi෽icant clusters in the adults: bilateral mid‐
dle occipital, bilateral superior parietal, bilateral BA 45 (the occipital
and dorsal cluster appearmerged in the table as they overlap) are pos‐
itively activated; right lateralized BA7, right primary somatosensory
are negatively activated. Activation in the hard condition, and in chil‐
dren, are much weaker, and there is little overlap: the only region that
canbe considered tobe in common, but doesn’t survivebootstrap tests,
is a negatively correlated, bilateral BA10, very frontal.

Representational Similarity Analysis. The results presented here are
preliminary, and require additional (ongoing) analyses. To better un‐
derstand the mental representation of the quadrilaterals, we also per‐
formeda searchlight‐basedRepresentational SimilarityAnalysis (RSA)
analysis of the data. For each voxel, participant and run, we could
select nearby voxels in a sphere of radius 3 voxels, and compute the
dissimilarity matrix across shapes to see, for each brain region, which
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Figure 3.6: Searchlight‐based Representational Similarity Analysis of the data. A. Confusion matrices used
to model the data: the symbolic one is derived from the geometric properties feature vectors, and the other
from RSA analysis of the internal representation of the shapes by CorNET, a neural network of object recog‐
nition. B. Average whitened correlation distance for each ROI identified with the category localizer, for each
model (x‐axis) and each condition and population (color). The bars represent the standard errors of the mean,
with the average not shown in the middle, and significant conditions after multiple‐comparison correction are
indicated with a star. C. Significant clusters identified in adults in the easy condition for equally spaced slices
along the z‐axis, see Table 3.4 for the list of the clusters’ location and properties. Purple voxels belong to a
significant cluster for the neural network model, orange voxels belong to a significant cluster for the symbolic
model, and green voxels belong to a significant cluster for both models independently.
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shapes weremore alike andwhich weremore different. We computed
the cross‐validated Mahalanobis distance (short: crossnobis distance;
cross‐validatedover runs) following (Walther et al., 2016) for eachpar‐
ticipant, in both populations and in both the easy and the hard condi‐
tion.

Then, we separately computed the whitened correlation of each
voxel’s dissimilarity matrix with two models. The ෽irst model is the
symbolic model derived by saying that two shapes are as dissimilar as
they have different symbolic regularities: it is a centered and normed
transformation of theManhattan distance between the feature vectors
of two shapes. The second model is derived from a neural network
by computed the crossnobis distance between the internal represen‐
tation of our shape in the IT layer of CorNET, a neural network of
object recognition scoring high in the brain‐score metric (Kubilius
et al., 2018; Schrimpf et al., 2018). This time the cross validation
is performed over random batches of shapes with different scaling
and rotations, using the same parameters as the experiment. The
dissimilarity matrix derived from these two strategies are shown in
Figure 3.6.A.

First, we tried to see whether the areas identi෽ied in the category lo‐
calizer were associated with either model in the RSA. For each cluster
identi෽ied in that analysis, for each participant and condition, we aver‐
aged the distance of the dissimilarity matrix and each model, and we
show the average across participants in Figure 3.6.B. Then for each
cluster and model, we computed a mixed effect with participants as
random effects, and the condition as ෽ixed effect, and we look at which
intercepts are signi෽icantly above zero. Because we are computing ten
independent statistics this way, we corrected p‐values with FDR (Ben‐
jamini & Hochberg, 1995), and two clusters came out as signi෽icant at
the p<.05 level: one with the symbolic model (cluster 2, p=.012) and
one with the neural network model (cluster 5, p=012). The ෽irst one
corresponds to the positive cluster located in the right parietal cortex,
while the second corresponds to the negative, right‐lateralized, ventral
cluster. Zomming in on those cluster, we performed one‐sample, one‐
sided t‐tests to see which condition and population contributed most
to the effect: for cluster 2, signi෽icant with the symbolic model, the ef‐
fect was entirely driven by the adults in the easy condition (visible on
Figure 3.6.B; p<.001, both hard condition and children yield p>.05).
For cluster 5, signi෽icant with the neural networkmodel, the effect was
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present both in adults and children in the easy condition (resp. p=.006
and p=.02), but absent in the hard condition (p>.05).
Finally, we performed whole‐brain search of signi෽icant clusters sig‐
ni෽icantly associated with either model, for each condition and each
population. Signi෽icance of clusters is assessed with non‐parametric
bootstrap similarly to the strategy used for the category localizer.
There were many signi෽icant clusters associated with both models in
the easy condition in adults, they are shown in Figure 3.6.C. In the
hard condition, no cluster was signi෽icantly associated with either
model, and in children a single cluster was identi෽ied, for the neural
networkmodel. To performmore targeted analyses, we then averaged
the data of each participant over each signi෽icant cluster identi෽ied in
the easy condition in adults, and performed one‐sample, one sided
t‐test against chance to see whether these clusters were also relevant
in other age groups and conditions. In doing so, we performed many
independent tests, and therefore the p‐values were corrected using
FDR: after this, no cluster was identi෽ied as signi෽icant in the other
groups at the p<.05 level, but two clusters showed a trend, both in
children: one with the neural network model, at MNI coordinates
(55.5, 15.5, 31.5), around BA44, with p=.092, and the other one with
the symbolic model, at MNI coordinates (37.5, ‐6.5, 51.5) with p=.092.
Table 3.4: Location, size and significance of clusters identified for the symbolic and neu‐
ral networkmodel using searchlight RSA. p‐values are derivedwith non‐parametric boot‐
strap. No significant cluster was identified for the hard condition in adults, and a single
cluster was found for children, for the neural network model.

Theory MNI (x, y, z) Peak t Size (mm³) Weight p‐value

Symbolic (1.5, 13.5, 49.5) 9.41 7048 4520 .0001
(‐12.5, ‐66.5, 5.5) 8.7 3496 2020 .002
(41.5, ‐34.5, 57.5) 8.23 8648 4740 .0001
(‐10.5, ‐74.5, ‐22.5) 7.77 3160 1760 .0031
(‐32.5, ‐54.5, 51.5) 7.34 3928 2160 .0014
(37.5, ‐6.5, 51.5) 7.3 13224 7710 <.0001
(‐36.5, ‐72.5, 31.5) 7.06 3136 1760 .0031
(31.5, 31.5, ‐8.5) 6.89 1616 950 .0113
(23.5, ‐64.5, 3.5) 6.64 1560 872 .0142
(35.5, ‐74.5, ‐38.5) 6.34 1440 824 .0168
(37.5, ‐70.5, 23.5) 6.31 2168 1210 .006
(‐30.5, ‐4.5, 55.5) 6.2 2344 1330 .0047
(‐30.5, ‐72.5, ‐50.5) 6.08 1272 698 .0239
(‐6.5, 65.5, ‐8.5) 5.88 1264 660 .0267
(‐16.5, 33.5, 45.5) 5.74 1712 943 .0114
(‐46.5, ‐0.5, 31.5) 5.65 1360 733 .0209

IT (55.5, 15.5, 31.5) 6.64 3248 1790 .0007
(‐44.5, ‐80.5, ‐2.5) 6.1 1984 1120 .0048
(35.5, 29.5, ‐6.5) 5.6 1544 816 .0145
(‐30.5, ‐82.5, 25.5) 5.3 1008 541 .0401
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Theory MNI (x, y, z) Peak t Size (mm³) Weight p‐value

(1.5, 21.5, 45.5) 5.26 1816 960 .0078
Children, IT (‐10.5, ‐78.5, 1.5) 6.29 1184 658 .033

Discussion

The results obtained with the intruder task offer a somewhat confus‐
ing picture. On the one hand, the behavior inside the fMRI scanner we
exactly as predicted, indicating that the task was well understood and
performed by subjects, in both age group and conditions. But on the
other hand, results from the functional data do not warrant a strong
conclusion.
In the easy condition in adults, many areas have an increased activity
when the shape regularity increases, including areas in the dorsal path‐
ways, and bilateral Broca areas. This is promising but confounded by
the fact that the activity could simply increasewith the dif෽iculty of the
decision part of the task, rather than being a property of the shapes
themselves, and once again fall in multiple demand or problem solv‐
ing (Duncan, 2010; Fedorenko et al., 2013), areas, rather than being
geometric‐shape speci෽ic. However, similar areas signi෽icantly corre‐
late with the symbolic model in RSA, suggesting that the shapes them‐
selves andnot only thedif෽iculty of the task contribute to this increased
activity.
In both analyses, the clusters identi෽ied do not overlap well with the
clusters identi෽ied in the category localizer. Conversely, when we test
the clusters from the category localizer with RSA, only two of them are
associated with either model in the RSA, once again only in the easy
condition: a ventral one with the neural network model, and an intra‐
parietal one with the symbolic model.
Another puzzling element comes from the location of the areas are
well modeled by the neural network model in the RSA: while there
is a strong cluster in the left inferior occipital cortex, exactly where
we expected it, the strongest cluster is in the right hemisphere in
the inferior frontal gyrus, around BA44, and strongly overlaps with
the symbolic model: this was completely absent from the analysis in
chapter 2where we ෽ind an early occipital cluster associated with the
neural networkmodel, and a late dorso‐frontal cluster associatedwith
the symbolic model. One possibility for this difference is that the RSA
performed in chapter 2 was restricted to two consecutive speci෽ic
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time windows, one for each model: perhaps after an early correlation
with the neural network in the occipital region, the information is
used again later in the frontal areas, maybe to compute the symbolic
properties, which would give the result we are seeing. In fact, when
performing RSA not directly on the signal, but with decoders, which
are more sensitive, we did ෽ind that the correlation with the neural
network model was sustained, and overlapped with the symbolic
model. Because these difference amounts to about 200‐300ms, they
would be invisible in the present fMRI study, which would just identify
the two main clusters separately without being able to separate them
in time.

More puzzling, neither the data from children or the data in the hard
condition afford similar conclusions: neither has positive clusters in
the linear contrast, and neither has strong clusters with the symbolic
model in the RSA, and even testing the clusters identi෽ied in the easy
condition in adults speci෽ically does not yield signi෽icant association
with either model.

What could cause these differences? Since the behavior results are
as expected, it seems unlikely that participants did not form a men‐
tal representation of the shapes. What is more, the clusters identi෽ied
in the category localizer naturally generalized from the adults to the
children, suggesting that processing of simple geometric shapes used
shared mechanisms. One possibility is that the areas identi෽ied relate
to conscious access to the geometric properties: in the hard condition,
the shapes were ෽lashed very brie෽ly, and the children may not explic‐
itly realize that they are relying on the symbolic properties despite do‐
ing so – in conjunction with the visual properties, as evidenced by the
෽indings of chapter 1.

Several additional analyses could be carried out – in particular, the
current RSA analysis of the data uses theory‐derived confusionmatrix,
but we could make used of the confusion matrices derived from be‐
havior instead. Using a visual search task, we have already derived a
confusionmatrix in adults, we could similarly compute one in children,
and use these two models to better understand the brain networks in‐
volved in the task.

Finally, it is important to stress out that the confusionmatrices derived
with RSA might be picking on the dif෽iculty of the task, and represent
a dissimilarity between dif෽iculty levels, rather than intrinsic proper‐
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ties of the geometric shapes. In a sense, this is unproblematic: areas
in which the dif෽iculty pattern resembles the symbolic regularities are
exactly those we are looking for. Still, it is more indirect than a passive
task where there would not be any confounding factor coming from
decision processes.

3.4 Conclusion

The results from the category localizer are unambiguous: in both
adults and children, the perception of geometric shapes, when com‐
pared with other visual categories, elicits a strong dissociation. On
the one hand, in the ventral pathway, geometric shapes generate
less activity than either face, house or tools. On the other hand,
geometric shapes activate the IPS bilaterally, and the ITS in adults:
a result reminiscent of the network for numerosity and high‐level
mathematics in the brain, a result corroborated in our data by the
increased activation of these areas to numbers as well.
Results from the intruder task are more ambiguous: in the condition
with the highest success rate, the easy condition in adults, both linear
contrasts and RSA analyses strongly yield vast networks whose activa‐
tion is related to the symbolic geometric complexity, and a few addi‐
tional areas that speci෽ically appear to encode information similarly to
neural networks of object recognition. This is a welcome result, but it
does not replicate straightforwardly in the other conditions we tested,
which prompts for additional analyses, and possibly additional data
collection, both of which are ongoing work being carried out.
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Chapter 4

Categorical perception of right angles in hu‐
mans and baboons

Abstract

Right angles are one of the most iconic properties of geometric
shapes. In this work, we systematically test humans in varia‐
tions of a match‐to‐sample task to better understand the con‐
ditions under which their behavior with right angles is categori‐
cally different from their behavior from non‐remarkable angles.
We also provide a ෽irst comparison with baboons undergoing
the same task in one of the conditions. In humans, we ෽ind that
there are several constituents needed for right angles to elicit
categorically different behavior: the task needs to give partici‐
pants enough time and clues to be able to recognize right angles,
and the task needs to be such that angles are the only possible
strategy to answer correctly, providing insight about the nature
of the mechanisms at play in the cognition of explicit geometric
properties.
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When a straight line standing on a straight line makes the
adjacent angles equal to one another, each of the equal
angles is right, and the straight line standing on the other is
called a perpendicular to that on which it stands.

Euclid’s Elements, Book I, De෽inition 10

In this chapter I will focus my attention on a single geometric object,
the right angle, and compare how human and baboons perceived var‐
ious angles around the right angle. Given a task involving angles, two
things can occur. If the task lends itself to symbolic processing, we ex‐
pect the perception of right angles to be more acute than that of other
angles and to exhibit a behavior that sets it apart from other angles.
If, on the other hand, behavior is a continuous function of angles as
predicted by several theories of perception, then symbolic processes
are not at play in that task. In this chapter, I ෽ind minimal pairs of
experimental conditions that trigger one behavior or the other in hu‐
mans, and provide a ෽irst insight as to the corresponding behavior in
baboons.

4.1 Introduction

Right angles are central building blocks of ෽ields as varied as engineer‐
ing, painting, architecture or design. Visually, are the midpoint angle
between no angle and a 180° angle, and as such they can be used to
divide space equally as observed as early as Euclid’ Elements (Byrne
& Euclid, 1847). In turn this property grants themmechanical proper‐
ties, stylistic properties, and so on, which makes right angles essential
in many ෽ields and applications. But how important and fundamental
are they in human cognition?

Detection of right angles within different enough angle distractors is a
task that educated adults, Mundurukus (people from an isolated Ama‐
zonian indigene group), and children can tacklewith success (Dehaene
et al., 2006; Izard, 2022). Angles forma continuum: if perception of an‐
gles were only bottom‐up visual processing, wemight expect behavior
with angles to change with the angle monotonously. Indeed “associ‐
ation ෽ield” models of path integration suggest that disconnected seg‐
ments are as easy to connect for the visual systemas the angle between
them is small (Field et al., 1993; Ledgeway et al., 2005).
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At the same time, right angles have been argued to be perceived cat‐
egorically and to behave singularly (Dillon et al., 2019): the typical
amount of alteration required to detect a deviation from an angle is
much lower for right angles and parallel lines than for other angles.
This was empirically supported in an intruder detection task, and was
shown is robust to size and orientation changes. Perhaps more strik‐
ing, this effect is robust to the viewing angle: the same effect was repli‐
cated on tilted screens, but not on front‐facing screens that displayed
percepts retinotopically identical as the tiled screen, indicating that
the sensitivity to right angles is really about the category andnot about
a property of that angle on the retina.

Given this elementary geometric property, we set out to compare the
behavior of humans and baboons on a task designed to elicit the cate‐
gorical perception of right angles in humans. We designed an experi‐
ment where we expected right angles to elicit more accurate behavior
than neighboring angles in humans, and test it in baboons. In doing
so, we realized that the simplest design we devised was not enough
to elicit a categorical perception right angles in humans, and therefore
parametricallymodi෽ied two components of the design independently:
presentation time, andwhether other visual cues could be successfully
used for answering correctly.

More speci෽ically, we used a delayed match‐to‐sample experiment
with angles as stimuli. An example of a trial is shown in Figure 4.1.
Within groups, we manipulate the duration participants can look at
a shape, a proxy for the encoding time (conditions “fast” and “slow”);
additionally, we manipulate whether the angles are directly visible as
two segments intersect or they have to be inferred from two segments
slightly separated by an empty space (conditions “connected” and
“disconnected”. Across groups we manipulated whether the rotation
of the stimuli was preserved between the target and the match in the
selection screen (conditions “rotation” and “no‐rotation”): when the
orientation is preserved, using the angle is not required as one can
rely directly on the direction of the segments to choose the match. We
made this strategy hard by using distractors that shared exactly one
direction with the match, but participants still seemed to favor this
strategy when answering.

Because as of the writing of this work we only have data in baboons
in a condition that does not trigger categorical perception of right an‐
gles in adults, themethod and results of the baboon experiment is only
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super෽icially described in the discussion.

4.2 Method

4.2.1 Participants

The experimentwas performed online in two recruitment sessions, ad‐
vertised on twitter, spaced 20 days apart. We started to collect data on
the no‐rotation condition on December 28th 2021, and stopped on Jan‐
uary 14th 2022, with 87 participants recruited. The rotation condition
spanned January 18th 2022 to January 22nd 2022, with 67 participants
recruited. Following criterions established in chapter 5 and (Sablé‐
Meyer, Ellis, et al., 2021) we removed only one participant, in the no‐
rotation condition. In total we therefore report data from 153 partic‐
ipants. Overall, we report data from 66 females, 84 males, and three
participants who preferred not to answer that question; ages ranged
from 18 to 79 with a mean of 42.9, a median of 45, and a standard de‐
viation of 14.1; and their education ranged as follows: High School 12,
Bachelors 32, Masters 73, PhD 36.

4.2.2 Stimuli

Training and generalizing stimuli were cliparts of fruits and letters,
they are all displayed in Figure 4.2; for both categories we had 12 dif‐
ferent stimuli, split in 6 training and 6 generalizing sets.

Angle stimuli were conveyed using white on black segments of con‐
stant length across stimuli. We generated all possible angles from 0°
to 180° by increments of 10°, and used angles at 30°, 60°, 90°, 120°,
and 150° as target stimuli (in the disconnected condition, we addition‐
ally used 0° and 180°, respectively the parallel and aligned conditions).
We ensured that the smallest distance between the two segments was
constant across angles to avoid that distance being used as a proxy for
the angle when performing the task. All angle stimuli in the discon‐
nected condition are shown in Figure 4.1; the connected stimuli are
almost identical except the two segments are shifted left/right until
they touch in an extremity.

The connected and disconnected were interleaved, but the fast and
slow conditions were different enough that we decided to have par‐
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Figure 4.1: A. General structure of the match‐to‐sample experiment. The experiment follows a (possibly)
delayed match‐to‐sample paradigm, where participants decide when to start a trial, and then see a target,
possibly an empty screen, and then a set of 6 shapes in which to find the target. B. Description of the display
in A In all cases, distractors were spaced by steps of 10° on either side of the target. In the fully rotated
condition (not displayed), the orientation of each target was uniformly sampled in [0, 360°]. In the no‐rotation
condition, each distractor shared one side’s directionwith the target (see highlight in green/orange) with a 2/3
split for each direction. C. Examples of stimuli Exemplar stimuli for training, generalizing, and either connected
or disconnected angle trials. D. All possible disconnected stimuli, plus all possible targets highlighted. Arrows
indicated a possible choice of distractors for the right angle whichmatch the example featured in A. Connected
stimuli are almost identical: both parallel and “aligned” stimuli are removed, and the two segments are joined
by shifting them an identical amount horizontally until they touch.
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Figure 4.2: All possible training stimuli to assert understanding of the task.

ticipants take them one after the other, with repeated instructions in‐
between, and in randomized order.

In slow trials, the encoding time was 1000ms, and the duration be‐
tween the disappearance of the target and the selection screen was
again 1000ms. In fast trials, the encoding time was 100ms and was
immediately (0ms) followed with the selection screen.

In total, participants took 4 trials for each angle, with either 5 or 7 pos‐
sible angles (depending on the connected / disconnected condition),
in two conditions, for a total of (4 ∗ 5 + 4 ∗ 7) ∗ 2 = 96 trials.

Additionally, participants received training trials before the angle tri‐
als. The speed of the training trials matched that of the ෽irst block par‐
ticipantswould get, and theydidnot receive training againupon chang‐
ing block. The training trialswere organized in increasingly hard steps,
and a success on a given stepwouldmove participants to the next step.
First participant had to ෽ind the match in three distractors, then four,
then ෽ive, and ෽inally six. For all these steps, the size of the target and
the match were completely identical. Then four more steps increas‐
ingly scaled up the size of the target when compared to the selection
screen, with scales going from 1x to 1.25x, 1.5x, 1.75x, and ෽inally 2x.
Then entirely new stimuli were used for the generalization trials (see
Figure 4.2), and ෽inally participants were ෽inished with the training.

During the entire experiment, participantwould receive gami෽ied feed‐
back in the formof a visual cue (either V or X, respectively green or red)
and auditory tones (respectively upward or downward going tones).

This training sequence was designed so that it would be possible to
test non‐human primates in the same experiment in possible future
work, but in the present chapter we report human data only.
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4.2.3 Procedure

When participants clicked the link in the tweet, they landed in a lan‐
guage choice page (French or English). Then theywere promptedwith
the consent form, followed with the demographic questions (gender,
age, highest degree, and touchscreen/mouse device). Then depending
onwhich block they startedwith, participants received the slow or the
fast instruction text, then took trials that utilized cliparts and letters
at the corresponding speed, and then moved to the angles. Halfway
through the experiment, participants received new instructions per‐
taining to the change of speed, and took the other half of the experi‐
ment without new training.

4.3 Results

Figure 4.3 shows aggregated results for all the conditions. There
are several immediate results to observe. First, in all conditions, for
all target angles, participants perform better than chance. This is
visible on Figure 4.3 and can be con෽irmed by one student test across
participants on their average success rate against chance (at 1/6), for
each target angle and condition: all p‐values are <.001. Then we run
an ANOVA across participants to measure the effect of whether angles
were rotated or not (across participants) and the target angle, speed
condition, and connected/disconnected condition (within subjects).
Because all 15 interactions are computed for these four factors we
only report those that reach signi෽icance, and report them in order
of decreasing explained variance estimated by the 𝜂2

𝐺. Furthermore,
some data points were removed within participants: for this analysis
only, this led to some participants missing conditions, and given
the total number of participants we decided to remove those 20
participants entirely from this analysis.

First comes the main effect of whether angles are connected or not
(𝜂2

𝐺=.049, F1,131=162.86, p<.001), which we can see on Figure 4.1
as the dashed lines are always below the solid lines. Then comes
the main effect of delay (𝜂2

𝐺=.036, F1,131=108.21, p<.001) and the
main effect of the target angle (𝜂2

𝐺=.032, F4,524=16.81, p<.001), both
expected from the ෽igure. Then we see the simple interaction terms of
interest: ෽irst between the target angle and the connected condition
(𝜂2

𝐺=.013, F4,524=10.75, p<.001), with the speed condition (𝜂2
𝐺=.012,
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Figure 4.3: Results of the experiment. Each point represents the probability that a given angle is chosen
if it was presented as a possible distractor, with color separating target angles, linetype separating conditions
(connected or disconnected), and panels separating (no‐)rotations, and fast/slow conditions. Error bars rep‐
resent standard error of the mean across participants. Chance level is is at 1/6th. The value presented when
the target angle and chosen angle are equal represents the success rate, while the other points of the same
color show the distribution of error. Note that since not all possible distractors are presented in each trial,
probabilities do not sum to one. Random behavior would yield flat behavior at chance level, while perfect
behavior would show a single spike at 1 when the target angle and the chosen angle match, with values of 0
everywhere else. Stars above segments indicate that the difference between two neighboring target angles is
significantly different, and again the linetype indicate the condition where there is a difference.

152



4.4. DISCUSSION

F4,524=10.22, p<.001) and with the rotation condition (𝜂2
𝐺=.005,

F4,524=2.75, p=.027). These three effects re෽lect the fact that the
“right‐angle” effect requires speci෽ic conditions, and we’ll pinpoint it
more precisely below. In addition, the interaction between the rota‐
tion condition and the connected condition is signi෽icant (𝜂2

𝐺=.002,
F1,131=7.60, p=.007). No other interaction reaches signi෽icance at the
p<.05 level.
The ANOVA treats angles as categorical factors. But we expect nearby
angles to yield comparable behavior, and therefore we can perform
Fisher tests for all pairwise neighboring angles: these tests are
reported in Figure 4.3 with segments and signi෽icance stars, at the
top. We ෽ind that 0° and 180° are, as expected, very different from
their neighbor angles, and therefore reach signi෽icance no matter the
condition (all p<.001). In addition to this, in the connected condition
a few additional pairwise comparison reach signi෽icance: the 30°‐60°
pair in two conditions, and the 60°‐90° and 90°‐120° pairs in the slow
condition with rotation.
More speci෽ically, when right angles are treated as categorical, we
expect their performance to be better than both 60° and 120°, while
when there are not we expect them to perform worse. This can be
tested speci෽ically by computing the contrast right angle vs. average
of 60° and 120° for each participant, and see under which condi‐
tion(s) the distribution is signi෽icantly above 0. This turned out to
be signi෽icant at the p<.05 only for slow trials where the lines are
connected (with rotation, t=5.32 and p<.001; without rotation, t=1.92
and p=.029) with a trend for slow trials with disconnected lines and
lines disconnected (t=1.44 and p=.077).

4.4 Discussion

Participants in our experiments could always recognize an angle in
a set of distractors better than chance; this held true no matter the
angle to be recognized, the presentation speed even when ෽lashed
100ms, whether the angles were rotated between the presentation
screen and the choice screen, andwhether the angleswere visually im‐
mediately available or conveyed with two non‐intersecting segments.
Participants were excellent for parallel lines and aligned segments,
and in most cases their performance were u‐shaped between these
two extreme points, with a minimum for 90°.
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A. (from Field et al., 1993)

Spine RF

Dendrite RF

B. (from Iacaruso et al., 2017)

Figure 4.4: A. Schematic illustration of the association field model borrowed from (Field et al., 1993): when
parts of a stimulus align along a smooth path with no inflection point such as on the left, they are naturally
linked together in a path, but the same doesn’t occur on the right. B. Illustration adapted from (Iacaruso et
al., 2017); Frequency of spines as a function of their difference from the reference orientation either in the
co‐axial (left) or orthogonal (right) visual space. Number of spines indicated above bars, out of resp. 97 (left)
and 62 (right), p values obtained by permutation tests out of 44 dendrites and 17 mice.

154



4.4. DISCUSSION

This result is in line with bottom‐up perception accounts and in par‐
ticular “association ෽ield” models of contour integration (Field et al.,
1993; Ledgeway et al., 2005). These models propose that the strength
of linking between close elements in a stimulus is proportional to their
alignments along smooth paths, and show that performance in path‐
detection tasks degrade with the typical angle between two consec‐
utive stimuli, a result compatible with the u‐shape curved described
above assuming a similar phenomenon occurs for parallel lines. In‐
tracranial data in mice (Iacaruso et al., 2017) sheds light on the imple‐
mentation level account of this phenomenon, and provides support for
the idea that this phenomenon stems from simple statistics of the en‐
vironment which features many roughly aligned neighboring edges.
However, under speci෽ic conditions, the behavior of right angles devi‐
ates from this and spikes well above neighboring angles: this has been
referred to as the “categorical perception” of right angles (Dillon et al.,
2019). More speci෽ically, this phenomenon seems to build on three
properties: (i) enough time to look at the angle, (ii) stimuli where the
angle is directly visible rather than inferred from segments, and most
interestingly (iii) knowing that the angle is absolutely required for the
task. (i) and (ii) suggest that unlike the association ෽ield model, the
mechanisms at play are not just bottom up but in fact requires efforts;
on the other hand (iii) suggests that attention is required for the cat‐
egorical perception to be formed, following ෽indings in chapter 1 and
(Sablé‐Meyer, Fagot, et al., 2021).
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Figure 4.5: A replication of the fast version, disconnected angles, no rotation conditions of the match‐to‐
sample task in baboons, with the same conventions.

Because this task is procedurally very similar to the task in chapter
5, for which baboons were trained, I brie෽ly report here and in Fig‐
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ure 4.5 results we obtained with 8 baboons who undertook at least
67 blocks of 84 trials after averaging the remaining blocks, with amax‐
imum of 100 blocks. Note that because of the training steps, theywere
never trained to ignore rotations, and therefore we tested them with‐
out changes in rotation. Furthermorewe only used disconnected stim‐
uli, and the experiment was self‐paced: encoding time was stopped
when the screen was touched a second time. However, they did not
use this feature, and instead clicked as fast as they could with an av‐
erage of 298ms of encoding time, comparable to the “fast” group in
humans if a bit slower. Their performance were very good with both
0° and 180° angles (both p<.0001), but they were not signi෽icantly bet‐
ter than chance at the p<.05 level for any other angle (with a trend for
30°, p=.084). Like humans, there were no “right‐angle” effect in this
particular condition.
Unfortunately, the absence of effect in this condition is not conclusive
regarding the question of whether baboons share a categorical percep‐
tion of right angleswith humans, because this condition does not elicit
the effect in humans either. However, the data suggests that even with
extensive training, the task is overall too hard for the baboons, who de‐
spite negative feedback and extensive training against the strategy still
appear to choose the “aligned” stimulus when the target is 150°, indi‐
cating that the task was not properly understood. Future work should
investigate whether with additional training and various conditions,
the effect emerges, and if it does so in the same group of conditions as
it does in the humans.

156



Chapter 5

A language of thought for the mental repre‐
sentation of geometric shapes

Abstract

In various cultures and at all spatial scales, humans produce a
rich complexity of geometric shapes such as lines, circles or spi‐
rals. Here, we formalize and test the hypothesis that all humans
possess a compositional language of thought that can produce
line drawings as recursive combinations of a minimal set of ge‐
ometric primitives. We present a programming language, sim‐
ilar to Logo, that combines discrete numbers and continuous
integration to form higher‐level structures based on repetition,
concatenation and embedding, and we show that the simplest
programs in this language generate the fundamental geometric
shapes observed in human cultures. On the perceptual side, we
propose that shape perception in humans involves searching for
the shortest program that correctly draws the image (program
induction). A consequence of this framework is that the men‐
tal dif෽iculty of remembering a shape should depend on its min‐
imum description length (MDL) in the proposed language. In
two experiments, we show that encoding and processing of ge‐
ometric shapes is well predicted by MDL. Furthermore, our hy‐
potheses predict additive laws for the psychological complexity
of repeated, concatenated or embedded shapes, which we con‐
෽irm experimentally.
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5 A language of thought for the mental representation of shapes

We could never know the geometric triangle through the one
we see traced on paper, if our mind had not had the idea of it
elsewhere.

René Descartes

This chapter corresponds to an article under consideration at
Cognitive Psychology (current status: awaiting minor revisions).
It is available as a preprint, referenced as follows: Sablé‐Meyer,
M., Ellis, K., Tenenbaum, J., & Dehaene, S. (2021). A language of
thought for the mental representation of geometric shapes. PsyArXiv.
https://doi.org/10.31234/osf.io/28mg4

5.1 Introduction

The cognitive origins of geometric knowledge remain heavily debated.
While several animal species possess sophisticated neural circuits for
spatial navigation (including head direction, place, grid and border
cells), or produce rich but systematic patterns (e.g. spiderwebs,
honeycombs, or the spiral‐like patterns of puffer ෽ishes), only humans
seem capable of mentally conceiving formal, symbolic geometric
structures in a combinatorial and productive manner.
The formalization of geometry is traditionally dated to Euclid’s Ele‐
ments, itself rooted in Egyptian and Babylonian precursors. Yet var‐
ious lines of evidence suggest that an intuitive sense of geometry is
much more ancient, and that many, possibly all human cultures share
a drive towards creating geometric designs (Van der Waerden, 2012).
Throughout theworld, at geographically distant and presumably unre‐
lated sites, humans have produced parallel lines, circles, squares, zig‐
zags or spirals, in activities as diverse as drawing, pottery, body paint‐
ings, rock art, land art (e.g., Nazca lines), stone‐cutting (e.g., bifaces), or
large‐scale constructions (e.g., Stonehenge). Many Neolithic sites con‐
tain square, circular or rectangular buildings as well as large circles of
stones (cromlechs) whose axes are often systematically oriented rela‐
tive to geographical or astronomical landmarks (Pimenta & Tirapicos,
2015). Before the advent of arti෽icial ෽light, the shape of these large
structures could not be directly apprehended: from the ground, they
would be perceived as a distorted quadrilateral or ellipse, at best. The
fact that squares and circles appeared at many different scales sug‐
gests that their human designers possessed an abstract mental con‐
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cept of geometric shape that guided their architectural, artistic or prac‐
tical creations.

5.1.1 Human and Animal Sensitivity to Geometric Patterns:
A Brief Review

Evidence for abstract concepts of geometry, including rectilinearity,
parallelism, perpendicularity and symmetries, is widespread through‐
out prehistory. About 70,000 years ago, homo Sapiens at Blombos cave
carved a piece of ocher with three interlocking sets of parallel lines
forming equilateral triangles, diamonds and hexagons (Henshilwood
et al., 2002). Much earlier, approximately 540,000 years ago, homo
Erectus in Java carved a zig‐zag pattern on a shell (J. C. A. Joordens
et al., 2015). Such a zig‐zag may look simple, but it approximately re‐
spects geometric constraints of equal lengths, equal angles and paral‐
lelism, and is undoubtedly attributed to the homo genus. Even earlier,
since ~1.8million years, ancient humans have been carving spheroids
(sphere‐like stones) and bifaces — stones possessing two orthogonal
planes of symmetry (Le Tensorer, 2006). The vast number of bifaces,
their near‐perfect symmetry (which is not required for them to oper‐
ate as ef෽icient tools (Le Tensorer, 2006)), and the archeological evi‐
dence that many were never used as tools, suggest that an aesthetic
drive for symmetry was already present in ancient humans.

Contemporary cognitive anthropology corroborates those ෽indings.
Cognitive tests performed in relatively isolated human groups such
as the Mundurucu from the Amazon, the Himba from Namibia, or
aborigine groups from Northern Australia, show that in the absence
of formal western education in mathematics, adults and even children
already possess strong intuitions of numerical and geometric concepts
(Amalric et al., 2017; Butterworth et al., 2008; Dehaene et al., 2006;
Izard et al., 2011; Pica et al., 2004; Sablé‐Meyer, Fagot, et al., 2021).
Indeed, adults without formal western education share with West‐
ern preschoolers a large repertoire of abstract geometric concepts
(Dehaene et al., 2006) and use them to capture the regularities in
spatial sequences (Amalric et al., 2017) and quadrilateral shapes such
as squares or parallelograms (Sablé‐Meyer, Fagot, et al., 2021). They
even possess sophisticated intuitions of how parallel lines behave
under planar and spherical geometry, such as the unicity of a parallel
line passing through a given point on the plane (Izard et al., 2011).
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Another piece of evidence arises from developmental data. Preschool‐
ers and even infants have been shown to possess sophisticated
intuitions of space (Hermer & Spelke, 1994; Landau et al., 1981;
Newcombe et al., 2005), spatial sequences (Amalric et al., 2017),
and mirror symmetry (Bornstein et al., 1978). Indeed, preschoolers’
drawings already show a tendency to represent abstract properties
of objects rather than the object itself. Although they look primitive,
drawings of a house as a triangle on top of a square, or a person as
a stick ෽igure with a round head, suggest a remarkable capacity for
abstracting away from the actual shape and attending to its principal
axes, at the expense of realism. Numerous tests leverage this geomet‐
ric competence to assess a child’s cognitive development by counting
the number of correct or incorrect abstract properties, for instance
when asked to draw a person (Goodenough, 1926; Harris, 1963; Long
et al., 2019; Prewett et al., 1988; Reynolds & Hickman, 2004). There
is some evidence, however limited, that this ability may be speci෽ically
human: when given pencils or a tablet computer, other non‐human
primates do not draw any abstract shapes or recognizable ෽igures, but
mostly generate shapeless scribbles (Saito et al., 2014; Tanaka et al.,
2003).

We recently compared the perception of quadrilateral geometric
shapes in humans and in baboons, using the very same task (Sablé‐
Meyer, Fagot, et al., 2021). We used the intruder test (Dehaene et
al., 2006), which involves viewing an array of pictures and clicking
on the one that looks distinctly different from the others, and is
well within the grasp of human adults, children and baboons. All
humans, regardless of age, culture and education, exhibited a striking
effect of shape regularity: intruders amongst squares and rectan‐
gles were detected faster and more accurately than amongst other,
more irregular quadrilaterals, and there was a systematic gradient
of response time and error rates across shapes, from squares and
rectangles to parallelograms, trapezoids, and fully irregular shapes.
Strikingly, this geometric regularity effect was absent in baboons.
Baboon behavior was quite consistent across individuals and could be
captured by neural network models of the ventral visual pathway for
object recognition. Modeling the human perception of quadrilaterals,
however, required an additional assumption, namely the existence of
discrete symbolic concepts of parallelism, right angle, equal length, or
equal angle. We therefore argued that two strategies can be used to
perform the outlier task: a visual one, available to all primates, and an
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abstract, symbolic one that may be unique to humans (Sablé‐Meyer,
Fagot, et al., 2021).
From these observations, one is left wondering what could be the
origins and evolutionary advantage of the human competence for
abstract geometry. We propose that it is a speci෽ic case, in the visual
domain, of a general human ability to decompose complex percepts
and ideas into composable, reusable parts – an ability which led to
a massive enhancement of human productions, from architecture to
tool building, and of the capacity to understand the abstract features
of the environment.

5.1.2 Summary of our Approach and Hypotheses

In the present paper, we formalize and put to an empirical test the hy‐
pothesis that geometry is one of the manifestations of the speci෽ically
human ability to represent and manipulate recursively embedded lan‐
guages (Dehaene et al., 2015; Fitch, 2014; Fodor, 1975; Frankland &
Greene, 2020; Hauser et al., 2002; Piantadosi, 2011).
Fodor (1975) famously introduced the language of thought hypoth‐
esis, according to which an inner combinatorial language underlies
high‐level cognition in humans and allows the creation of a vast space
of mental representations by recursive recombination of preexisting
ones. Hauser, Chomsky and Fitch (Hauser et al., 2002) hypothesized
that recursion might be the single uniquely human ingredient that ex‐
plains the emergence of the human language faculty. Fitch (2014) and
Dehaene et al. (2015) later argued that recursion is not limited to
linguistic communication, and that various “languages of thought”, all
based on a basic capacity for recursive syntax and compositional se‐
mantics, could underlie many other uniquely human abilities such as
music, mathematics or theory of mind. Here, we apply this idea to the
domain of geometric shape perception, a possibility which was antic‐
ipated by (Hochberg & McAlister, 1953) who summarized their pro‐
posal as “the probability of a given perceptual response to a stimulus
is an inverse function of the amount of information required to de෽ine
that pattern.”
Our proposal builds upon the seminal work of Leeuwenberg and
colleagues (Boselie & Leeuwenberg, 1986; E. L. J. Leeuwenberg, 1971),
who proposed a formal coding language for 2‐ and 3‐dimensional
shapes, and showed that it could account for data on human shape
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perception. Furthermore, Leeuwenberg’s language outputs sequences
of numbers which can then be mapped to tones to form “tunes”, and
the length of the smallest program for a given tune correlated with the
average listening time of participants asked to repeatedly listen to the
tune until they anticipated they could predict it. Later, Leyton (Leyton,
1984, 2003) argued that the shapes that humans generate arise from
a set of primitives (points, lines, planes) together with the repeated
mental application of a series of group transformations that duplicate,
stretch, rotate, or skew them. While these elegant proposals have had
a considerable in෽luence in the design of graphics software, it is fair
to say that the core aspect of productive compositionality from basic
operations remained partially disconnected from the experimental
psychophysical or neurophysiological literature on shape perception,
while the individual transformations remained (for exceptions, see
Brincat & Connor, 2004, 2006; Hung et al., 2012).

In our previouswork, we introduced amuchmore restricted, yetmore
precise, language of thought for geometric sequences. Our work fo‐
cusedon capturing thepsychological complexity of all the sequences of
8 locations that can be generated by drawing without repetition from
the vertices of an octagon using either explicit prediction of the next lo‐
cation or eye tracking of the anticipation when looking at a sequence
(Amalric et al., 2017). The basic building blocks of our proposed lan‐
guagewere the arithmetic primitive of discrete number, the geometric
primitives of rotation and of symmetry around a given axis, and a sin‐
gle recursive operation of repetition (possibly with variations). These
operations could be embedded, thus allowing for repetitions of rep‐
etitions in a nested manner. For instance, the repeated application
of a left‐right symmetry operation, each time with an increment in
the starting point, could generate a zig‐zag pattern. A square could
be generated by a 4‐fold repetition of moving by 2 vertices around
the octagon. As a more complex example, a sequence of two squares
could be generated by two nested “for loops”, i.e. a 2‐fold repetition
(while changing the starting point) of the 4‐fold repetition that draws
a square.

Amalric et al. (2017) measured empirically the dif෽iculty that
preschoolers and adults (including Mundurucu adults) had in pre‐
dicting or memorizing spatial sequences of locations on an octagon.
Across 11 geometric sequences, psychological complexity was
determined by the complexity of their internal representation in
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the proposed language. Working memory was not determined by
sequence length (which, indeed, was ෽ixed at 8 items), but by the
capacity to compress the sequence into a compact internal repre‐
sentation using the proposed language. The central concept here, as
already proposed by many others (Chater & Vitányi, 2003; Feldman,
2000, 2003; Li & Vitányi, 1997; Mathy & Feldman, 2012; Romano et
al., 2013), is that psychological complexity in humans depends on
minimum description length (MDL), i.e. the length of the shortest
mental representation which can encode the sequence, rather the
literal length of the sequence. In the case of our language for geomet‐
ric sequences, MDL was also shown to tightly correlates with brain
activity in both functional magnetic resonance imaging (fMRI; Wang
et al., 2019) and magneto‐encephalography (Al Roumi et al., 2021).
The very same language was also successfully extended to account
for the perception of simple auditory sequences made of two discrete
sounds (Planton et al., 2021).

In the present work, we move beyond discrete sequences made of
points and straight lines, and tackle the mental representation of
static geometric shapes such as a square, a circle or a spiral. As
noted above, the square is easily captured by a language with discrete
integers and repetition (“for loops”). However, continuously varying
shapes such as circles and spirals raise interesting issues that arguably
require more than integers. In computer languages such as Logo, such
drawings are implemented using a discrete repetition instructionwith
a very small increment, thus drawing a quasi‐continuous curve which
is in fact made of straight lines. However, we ෽ind implausible the idea
that humans intuitively think of such an in෽initesimal and inherently
discrete representation when thinking of a circle. Furthermore,
computationally, the unbounded nature of such in෽initesimal loops
would allow short programs to generate visually complex shapes.
Instead, we argue that the crucial notion of “repetition with variation”
introduced in our previous work can be helpful again, but now in a
continuous version. We propose that, whenever a mental primitive
is available, for instance for drawing a straight line, mental control
structures in humans are available to either keep its parameters
constant, or to continuously vary them over time. Thus, the new ver‐
sion of our proposed languages includes not only discrete repetition
(“for loops”), but also continuous repetition (i.e. integration). As a
result, the language can conceive of a curve with a ෽ixed amount of
turning at any moment – a circle –, or a curve where the amount
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of turning increases continuously – a spiral –, etc. Our proposal
implies that both discrete repetition and continuous path integration
are primitive concepts in the human language of geometry. Indeed,
a key hypothesis of the present work is that the human mind can
encode discrete as well as continuous changes and integrate them
within a single language of thought. This part of our proposal is
deeply related to the near‐universal existence of a system of aspect
in human natural languages, betraying the existence of continuous
versus discrete concepts of time and repetition (compare for instance
the imperfective, e.g. “the curve was turning”, with the perfective, e.g.
“the curve turned”) (Comrie, 1976).

In summary, we propose that the humanmental representation of geo‐
metric shape involves a language of thought that can produce virtually
all the geometric line drawings observed in human cultures as combi‐
nations of a minimal set of geometric primitives. Our core hypothe‐
sis is that perceiving a shape, in humans, consists in ෽inding the short‐
est program that suf෽ices to reproduce it. Our proposal thus connects
shape perception to the problem of program induction, i.e. the identi‐
෽ication of a program that produces a certain output. In linewithmuch
previouswork (e.g. Chater&Vitányi, 2003; Feldman, 2000, 2003; Feld‐
man & Singh, 2006; Li & Vitányi, 1997; Mathy & Feldman, 2012; Ro‐
mano et al., 2013), we hypothesize that the perceived complexity of a
shape is determined by its minimum description length (MDL) in the
proposed language.

As a consequence of the relation betweenMDL and the perceived com‐
plexity of a shape, we predict that several behavioral measures should
be directly impacted by the MDL of a shape. For instance, the time it
takes to learn a shape (i.e., to induce its program), as well as its subjec‐
tive complexity, should scale with the MDL. Other measures, such as
the time to select a known shape amongst distractors, or the accuracy
of that choice, may also scale withMDL to the extent that the in෽luence
of other competing strategies based on low‐level visual properties (e.g.
average gray level, spatial frequency) can be mitigated. Indeed, choice
time is a function of the multivariate relation between target and the
distractors (Vigo & Doan, 2015), so in the following experiments, we
make sure that at least one distractor is close enough to the target in
low‐level visual properties, thus inciting participants to adopt a higher‐
level strategy. Note that our language targets geometric shapes specif‐
ically and makes no claims about other kind shapes, such as the con‐
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tours of natural objects, whose description requires other constructs
(see Wilder et al., 2016).
Two comments are in order. First, the power of the proposed language
rests entirely on its capacity to encode repetitionwith variation (e.g.
a square and then another square). This concept is equivalent to in‐
variance up to a transformation (e.g. invariance of the square up to a
transformation of its starting point), which in mathematics, is the de෽i‐
nition of symmetry: an object is said to be symmetric if it (or part of it)
remains unchanged after some transformation. The language we pro‐
posed recursively compresses anydetectable repetitionwith variation,
and therefore any symmetry in the object or sequence. Second, our
proposal is related to, but distinct from, the psychological concept of
chunking. While our language decomposes objects into coherent sub‐
groups, this proposal goes beyondmere chunking in that (1) it applies
recursively and (2) its ෽inal representation is not just a set of nested
groupings (chunks of chunks) but a mental program which can gener‐
ate the initial shape or sequence, possibly with variations.
Below, we describe the proposed language in detail, list its predictions,
and test them in two experiments. First, we show that our language
predicts which shapes are judged simple. Second, we show that any
such language has to satisfy a set of additive relationships for repeated,
concatenated or embedded shapes, and that those universal laws can
be experimentally validated.

5.2 A Generative Language for Geometric
Shapes

In this section, we make our proposal concrete by introducing a spe‐
ci෽ic language, somewhat similar to Logo’s turtle language, for gener‐
ating a variety of geometric line drawings. The language we propose
is based on two postulates. First, we assume that all humans possess
a set of primitive operators or “mental routines” (Ullman, 1984) that
serve as building blocks for more complex programs. We included ele‐
mentary primitives that have been proven to be present in human chil‐
dren or adults in the absence of formal education; several of them are
likely to be inherited from primate evolution. Our primitives comprise
the concepts of

• Small exact integers (Feigenson et al., 2004) which can be mini‐
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mally generated by the successor function 𝑠(𝑛) = 𝑛 + 1 (Izard
et al., 2008),

• Fractions, i.e. ratios of those integers (Jacob & Nieder, 2009;
Siegler et al., 2011)

• Straight line (see e.g. Izard et al., 2011),

• Heading direction (Muller et al., 1996) and how it changes when
we turn,

• Path integration (Dehaene et al., 2006; Gallistel, 1990; E. L. J.
Leeuwenberg, 1971; McNaughton et al., 2006; O’Keefe & Nadel,
1978),

• Right angle turn (Dehaene et al., 2006; Dillon et al., 2019; Izard
et al., 2011)

Extensions of this list, for instance to large approximate numbers,
would be straightforward and are considered in the discussion, but as
we shall see, those primitives appear to suf෽ice to account for a broad
variety of geometric shapes that humans universally consider simple.

Our second postulate is that, in humans only, a compositional language
of thought allows these primitive operators to be combined into larger
programs. We suppose that three composition instructions are avail‐
able: concatenation; repetition; and call to a subprogram in isolation.

5.2.1 Program Instructions

The full language, described in Figure 5.1, contains the following in‐
structions. First, as in the “logo” language (Abelson et al., 1974), draw‐
ing instructions dictate the movements of a pen that can move and
trace curves on a plane. Those instructions are Turn, which changes
the current heading of the pen; Move, which changes the position of
the pen by a certain amount in the current direction without tracing;
and Trace, which traces a curve by integrating over a set of parameters
(duration, speed, acceleration, and turning speed).

Second, the three control structures are Concatenate (also denoted by
“;”) which executes one program and then another; Repeat, which re‐
peats a program a certain number of times (twice by default); and Sub‐
programwhich saves the current state, executes a given program, and
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Program :=

| Program ; Program Concatenate : run one program and then another

| Repeat([Int=2]) { Program } Repeat a program a certain number of times

| Subprogram { Program } Execute a program, then restore the original state

| Trace([t=Int=1], Trace a curve by moving according to the parameters

[speed=Num=+1],

[acceleration=Num=+0],

[turningSpeed=Num=+0])

| Move([t=Num=+1]) Move a certain distance without tracing anything

| Turn(angle=Num) Rotate the current heading

Int :=

| one Number 1

| Next(Int) Successor function

Num :=

| +Int | -Int Return a signed number

| +Int/Int | -Int/Int Return the signed fraction of two integers

control

drawing

arithmetic

Figure 5.1: Proposed language of thought for the mental representation of geometric shapes. The figure
lists all primitive operators and their parameters. As indicated in the right column, control primitives act on
programs, drawing primitivesmove the pen on the plane in various ways, and arithmetic instructions generate
integers and fractions that are passed as parameters. Green, instructions; pink, types; blue, named parame‐
ters; gray, default values for optional arguments (denoted by brackets).

resumes the previous state for the rest of the execution, thereby isola‐
tion the execution of the subprogram.
Third, since these instructions require either discrete or continuous ar‐
guments, the language contains a number system, with integers (Int)
and numerical (Num) types. For computational simplicity, in order to
avoid a huge combinatorial explosion that would prevent the enumer‐
ation of allminimal programs, we did not include a full algebra, in spite
of recent evidence that humans may possess one (Grace et al., 2020).
Instead, the Int’s are built using Peano arithmetic starting from 1 (the
language has a one primitive and a successor primitive, and the Num
are either signed integers (positive or negative), or signed fractions of
two integers. This is enough to generate rational numbers, but pre‐
vents nesting of fractions.
The numbers generated by our language are unitless, and they are
interpreted differently depending on the functions in which they are
evaluated. For the Turn function, an argument of 1 is interpreted as
“one right angle” (i.e. the unit for angle is “right angle”). Similarly,
Move and Trace instructions use implicit units of length and speed,
determined such that the default values (1) on duration and turning
speed imply turning by a full circle. These hypotheses, while plausible,
are not crucial, since changing them would only minimally change the
predicted shape complexities (e.g. if the default turn was by 180°, a
right‐angle turn would still be available at a minimal constant cost, as
half of it).
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5.2.2 Calculation of Minimum Description Length

Our language does not guarantee that each shape can be generated by
a single program. Quite the opposite: whenever a shape can be gen‐
erated at all, an in෽inity of programs are available to generate it. Our
third key postulate is therefore that humans search for the shortest
program that draws a given shape. We refer to the complexity of the
shortest program for a given shape as itsMinimumDescription Length
(MDL), and the corresponding program(s) as the Minimal Program(s).
Notice that this is compatible with a Bayesian framework, or proba‐
bilistic program induction (Lake et al., 2015): since the number of pro‐
grams of length 𝑛 increases exponentially with 𝑛, the log likelihood of
a given program under the hypothesis of a probabilistic grammar will
be proportional to its MDL.
The complexity of a program is de෽ined as the number of nodes in its
syntax tree, or equivalently the number of primitives in the program,
with two exceptions. First, whenever a signed number is required, for
instancewhen turning by a certain angle, an additional node is needed
(indicating + or ‐). This node was not counted, thus preventing the
cost of signed values from being systematically higher than that of un‐
signed values (e.g. one, vs. +one). Second, concatenations did not
increase MDL. This feature arose as a by‐product of our implementa‐
tion, which used continuations to express concatenation (all programs
takes a last argument which must be a program, possibly empty, and
executes it when it is done, which effectively implements concatena‐
tions). We checked that the results did not change dramatically when
adding counting concatenations, as the results should not hinge on this
implementation detail.

5.2.3 Examples

The minimal program to draw a square is
Repeat { Repeat { Trace ; Turn(angle=+one) } }

(where the in෽ix operator “;” denotes concatenation). This program
works because, in the absence of any argument, Repeat defaults to 2
repetitions. Since a turn of onemeans a right‐angle turn, this program
concatenates four segments, each ending with a right‐angle turn. The
MDL of this program is 5 (repeat + repeat + trace + turn + one).
As a slightly more complex example, the following program draws a
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triskelion ( ), a classic Celtic ෽igure:
Repeat(next(next(one))) {
Subprogram { Trace(acceleration=‐one/next(next(one)),

turningSpeed=one)
} ;

Turn(angle=next(next(next(one)))/next(next(one)))
}

This program of complexity 21 draws three identical inward spirals
using the Trace instruction. Note that the number 3 is coded as
next(next(one)) (again, this assumption is adopted for simplicity;
adding primitives for numbers 2 and 3 would only minimally change
the predicted MDL). The Subprogram instruction ensures that, after
drawing a single spiral, the position is reset to the origin. The Turn
instruction, which takes 4/3 as its argument, ensures that the three
spirals are oriented at 120∘ = 4

390∘ from each other.

5.2.4 Simulation Results

We ෽irst examined the shortest programs in the proposed language,
and whether they always generate shapes that are simple and fre‐
quently attested in human cultural history. To this end, we wrote
a program that systematically enumerates all possible programs in
order of increasing MDL, and draws the corresponding shapes (we
eliminated, automatically as well as manually, the shapes that could
be generated by a simpler program). Figure 5.2 shows a random
subsample of the resulting shapes after cleaning of duplicates, sorted
byMDL. The simplest, lowest complexity shapes are extremely simple:
they consist of a line segment (MDL=1), then a circle (MDL=2) and a
spiral (MDL=3). The low‐complexity shapes with MDL = 4 or 5 are
also excellent candidates for cultural universals: repeating circles,
dashed lines, spirals with various numbers of loops, and other simple
mathematical shapes such as the square, the half‐circle, or two tangent
circles. At this stage, the concatenation instruction also generates
less intuitive, but still culturally attested shapes such as a “sigma”
(segment + circle) or a “crosier” (segment + spiral). As MDL increases,
the huge combinatorial explosion of programs results in an enormous
variety of shapes, only some of which are culturally observed. Nev‐
ertheless, the shapes with low MDL remain introspectively simple
(this intuition is tested formally in experiment 1 further below). This
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Shapes sorted by Minimum Description Length

MDL

1

2

3

4

5

6

7

8

9

10

11

12

Figure 5.2: Sample shapes generated by the enumeration of all programs in the proposed language. Pro‐
grams were listed by increasing MDL. Identical or perceptually indistinguishable shapes that could be gener‐
ated by a simpler program were eliminated. Starting at MDL=4, only a limited sample of 7 shapes is shown, as
the number of shapes increases exponentially with MDL.
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observation is in stark contrast with most other such languages, such
as Logo, where the combinatorial explosion creates short programs
with complex, unintuitive graphic outputs.

5.2.5 Program Induction Using DreamCoder

A crucial aspect of our proposal is that humans encode a shape men‐
tally by inferring a simple program that could generate it. Thus, the
perception of a simple shape is an act of “program induction”. Yet it
is implausible that humans scan through thousands of programs be‐
fore recognizing a square. Otherwise, the time required to recognize
a shape would grow exponentially with the length of its shortest pro‐
gram. Thus, it is important to show that such an inference is, at least ap‐
proximately, computationally feasible in our speci෽ic case. While pro‐
gram induction remains a dif෽icult challenge for computer science, we
leveraged a state‐of‐the‐art program induction technique, the Dream‐
Coder algorithm (Ellis et al., 2021). This algorithm is given program‐
ming problems via examples of the desired behavior, and searches for
the simplest program that performs the task. Here, a task reduces to
a shape, and DreamCoder has to ෽ind the shortest program that gener‐
ates it. DreamCoder internally represents the language as a probabilis‐
tic grammar and enumerates programs according to their likelihood
using the probabilistic weights of the grammar.
Two features of DreamCoder speed up the search. First, the weights
are task‐dependent and are suggested by a neural network for a given
task. For instance, DreamCoder may learn that shapes with straight
lines call the Trace instruction without any TurningSpeed argument.
The neural network can be trained without any environmental input
or supervision, simply by sampling a random program, generating the
corresponding shape (called “dreaming”) in a top‐down manner, then
using this internally generated shape‐program data pair in supervised
learning in order to adjust the bottom‐upweights from the shape to its
program representation (see also Lake et al., 2017). Second, Dream‐
Coder builds new abstractions for pieces of programs that are often
used for a given set of tasks: for example, if the shapes contain many
right angles, itmay create a newabstractionTurn(angle=1), thereby in‐
creasing the likelihoodof programs that use it. In aBayesian sense, this
corresponds to updating the priors over the space of programs. This
abstraction mechanism is useful to capture regularities in a corpus of
shapes: subprograms used to draw the simplest ones can be reused to
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draw more complex ones. Interestingly, these two mechanisms inter‐
act. As the grammar becomes biased towards using certain program
schemas, theneural networkalsobecomesbiased towards recognizing
them; for example, the neural network might increase the probability
of the “turn” primitive when it sees angles, or that of “repeat” when it
notices repeating patterns.

“Greek” “Celtic”

A. Training set

B. Samples (dreams)

“Greek” “Celtic”

Figure 5.3: Testing the DreamCoder algorithm for program induction. A, shapes used in a training phase.
We verified that, in response to all 32 shapes shown, the algorithm was able to identify a short, presum‐
ably minimal program that could generate it. The algorithm was trained either with the square shapes at
left (“Greek” style) or with the circular shapes at right (“Celtic” style). B, examples of additional shapes spon‐
taneously generated by sampling from the grammar learned during the training set, and therefore biased
towards a certain geometric style.

We found that, together, those two mechanisms made program induc‐
tion feasible for our language, at least for relatively simple shapes. In
Figure 5.3, we present two separate corpora, one withmostly rectilin‐
ear shapes (referred to as “Greek”), and one with mostly curvilinear
shapes (referred to as “Celtic”). After learning, DreamCoder ෽inds ෽it‐
ting programs for each of these tasks: for more exhaustive evaluation
of DreamCoder including train/test splits and ablation of its various
components, including with drawing primitives, refer to (Ellis et al.,
2021). Interestingly, the abstractions it created depending on the do‐
main were different. This could be visualized by sampling “dreams”
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from the resulting grammars. Simple shapes (circles, lines, squares)
appear in both cases as they are still simple in a grammar with addi‐
tional abstractions, but the grammars exhibit a bias towards shapes
that resemble the training set (bottom row in Figure 5.3) because the
new abstractions are tuned for observed shapes, and therefore yield
visually similar shapes.

The DreamCoder approach opens up a number of perspectives on how
human cognition could ef෽iciently address the problem of program
induction. First, it naturally accounts for cultural drifts: while shapes
such as circles and squares are universally shared, cultures are also
characterized by the frequent use of speci෽ic patterns (e.g. linear
Greek friezes versus curvilinear Celtic spirals). This arises even
though the geometric primitives are universal, because each culture
adopts, initially by chance, some preferred combination of primitives,
which are then internalized as frequent subprograms or program
fragments and progressively cement a speci෽ic style of geometric
patterns – a proposition that generalizes the “child as a hacker”
hypothesis (Rule et al., 2020). Second, DreamCoder may explain
how simple geometric shapes may be ef෽iciently recognized and used
by young children in the absence of much or any training (poverty
of the stimulus argument). This is because the top‐down system
(from programs to shapes) can be used to train the bottom‐up system
(from shapes to programs) via the use of “dreams”, i.e. internally
generated training data. In an improved version of DreamCoder, the
bottom‐up neural network could be repurposed to directly retrieve
the most plausible program for a given shape, thus providing a possi‐
ble mechanism by which humans can quickly identify simple shapes.
Finally, another promising aspect of this proposal, which remains to
be fully explored, is the possibility of creating reusable abstractions or
program templates. While the square, for instance, is not a primitive
of the original language, a square‐drawing program schema may
become abstracted over time, thus allowing the participant to easily
understand concepts such as “a square of circles” or “a square twice
larger than the previous one”, etc. At present, however, for simplicity,
such named subprograms are not part of the current language, but
solely of the DreamCoder program‐induction software.
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5.3 Experiment 1: Predicting Geometric Com‐
plexity

Does the proposed language have any psychological reality? In experi‐
ment 1, we test the simplest prediction of our proposal: the perceived
complexity of a shape should be determined by its minimal program
length. If humans represent shapes asmental programs, then for tasks
involving shape perception and manipulation, the MDL of the shape
should predict the dif෽iculty of the task. Additionally, asMDL increases,
the time it takes to perform program induction on the shape increases
as well, and therefore it should take longer to encode the shape in
working memory and to compare it with other shapes.
This prediction should hold only provided that other simple percep‐
tual strategies do not suf෽ice to perform those tasks. In previous work,
we found that the perception of quadrilaterals could be based on two
systems: a list of symbolic rules akin to those arising from the current
language (e.g. right angle, equal sides), and only available to humans;
and a classical invariant shape recognition system, well captured by a
convolutional neural networkmodel of the ventral visual pathway, and
available to both humanandnon‐humanprimates (Sablé‐Meyer, Fagot,
et al., 2021). Thus, to properly test the existence of the ෽irst system, it
is important to cancel out the potential contributions of the second.
Here, we asked participants to memorize a sample geometric shape
and perform a delayed match‐to‐sample task where, after a 2‐second
delay, that shape had to be selected from an array of 6 possible choices,
some of whichwere perceptually quite similar (Figure 5.4A).Wemea‐
sured the choice time, but also the encoding time by letting partici‐
pants view the sample shape for as long as they wished, holding down
the space bar until they were ready to decide; as soon as they released
the space bar, the sample shape disappeared, then after a ෽ixed delay,
the choices appeared. We hypothesized that both encoding time and
choice time would be predicted by MDL.

5.3.1 Methods

Participants

Participants were 125 adults tested online (53 females, 69 males, 3
preferrednot to answer; age range20 to78,meanandmedian44years
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Phase 2: choice Phase 1 : Encoding

2s

Blank screen

A

RT (ms)

B

Encoding:
R² = 0.68
p = 0.0009

Choice:
R² = 0.73
p = 0.0004

1000

1500

2000

Minimum Description Length

RT residuals (ms)

C

Encoding:
R² = 0.46
p = 0.0158

Choice:
R² = 0.54
p = 0.0067

-300

0

300

Minimum Description Length
2 4 6 8 10 122 4 6 8 10 12

Figure 5.4: Procedure and results for experiment 1. A, task structure. On each trial, participants pressed
a key for as long as they needed to memorize a shape (encoding phase), then, after a 2‐second delay, had to
select the corresponding shape among a 2x3 grid (choice phase). Note that there was a size change between
phase 1 and phase 2. B, correlation between MDL and behavior. Average encoding time (purple) and choice
time (orange) are plotted as a function of MDL. Error bars represent one standard error across participants. C,
same results after regressing out the effect of total luminance.
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old), recruited and tested online via messages on social media. The
task was approved by our university’ committee for ethical research
(CER‐Paris‐Saclay‐2019‐063) and participants gave informed consent.

Procedure and Stimuli

On each trial, we showed participants a sample shape for a variable
duration, then an empty screen for 2 seconds, and ෽inally a 2x3 choice
screen with 6 shapes. Participants were asked to click on the shape
that was shown originally. Participants controlled how long they
looked at the reference shape: when they were ready to start a trial,
they clicked at the center of the screen (thus centering their mouse),
then pressed the space bar on their keyboard. The sample shape was
shown for as long as the space bar was depressed. Upon releasing
the space bar, the shape disappeared and they were left with a blank
screen. Instructions insisted on the self‐paced nature of the task:
“Keep the spacebar depressed for as long as you deem necessary
to remember the shape well”. We call the duration of the press the
encoding time, as it is an indirectmeasure of the time that participants
needed to encode the target shape. More speci෽ically, we predict that
this duration spans over several cognitive steps, some independent
from the shape (e.g. motor actions) and at least one that should scale
with the MDL, as participants are performing program induction to
build a mental representation of the shape they remember.
The choice screen comprised six different shapes that were displayed
on an isoluminant blue/yellow checkerboard (Figure 5.4A). At that
point, participants could click on a shape, which ended the trial. We
measured both accuracy and response time, which we refer to as
choice time. We predicted that those variables should also impacted
by MDL because, after ruling out visually implausible distractors
(e.g. based an exceedingly different gray level), participants would
have to either generate the target shape from their remembered
mental representation and compare the output to the remaining
candidates, or to encode the remaining candidates and compare with
their memory representation of the target, and both strategies should
scale with MDL.
The experiment comprised 6 initial training trials, then 68 trials with
68 unique testing shapes, each appearing only once as a sample. The
68 testing shapes are shown in Figure 5.2, while the training shapes
were 6 additional shapes sample from the list of shapes with MDL=5
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in our language. During training, the distractors were always the same
six shapes and participants had each of them as a target once. Piloting
indicated that the choice of distractorswas crucial for the performance
to vary from one shape to the other: if the distractors were too dissim‐
ilar from the sample shape, participants learned to press and release
the spacebar as fast as they could, knowing that a purely perceptual
strategy suf෽iced for virtually perfect accuracy and therefore bypass‐
ing the need to have an accurate mental representation of the shape.
To mitigate this strategy, we selected distractors closely matched to
each shape. We computed, for each shape, the four closest ones in Fig‐
ure 5.2 as de෽ined by two metrics: (i) the average gray level (average
pixel value of an image), and (ii) the difference in the vector codes of
the shapes within the last layer of a convolutional neural network of
object recognition, CORnet (Kubilius et al., 2019). CORnet is a convolu‐
tional neural network that ෽igures amongst the top‐scoring models of
the ventral stream according to BrainScore, “a composite of multiple
neural and behavioral benchmarks that score any ANN on how similar
it is to the brain’s mechanisms for core object recognition” (Schrimpf
et al., 2018, 2020). Then, on each trial, we presented on the choice
screen, at random locations: (1) the correct target shape; (2) two of
the four closest shapes according to CORnet; (3) two of the four closest
shapes according to average gray level, different from those selected in
(2); and (4) a last shape uniformly sampled among the remaining test
shapes. The selection algorithm ensured that all 6 choice shapes dif‐
fered. The choice of shapes and their placementwere fully randomized
for each participant, independently within training and within testing.

5.3.2 Results

Overall error rate was very low (1.82%), so we concentrated our anal‐
ysis on response times. We removed all participants who failed on 5
or more trials, as well as participants whose overall average encoding
time or choice time was higher than the group mean plus three stan‐
dard deviations (9 participants removed in total; 116 remaining). We
also removed, for each shape, trials where the encoding time exceeded
the average encoding time of that shape plus three standard deviations
(and similarly for choice time). This procedure removed 3.8% of the
total number of trials.
To test for the predicted effect of MDL on behavior, we performed sim‐
ple linear regressions on the encoding times and choice times as a func‐
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tion of the MDL. Both measures were signi෽icantly correlated with the
MDL of the target shape (Figure 5.4B; encoding time: R²=.68, p<.001;
choice time: R²=.73, p<.001). We also performed between‐subjects
ANOVAs on the linear effect of MDL (numerical factor) across partici‐
pants. The main effect of MDL was again highly signi෽icant (encoding
time: F(1,115)=148.5, p<.001; choice time: F(1,115)=480.7, p<.001).
SinceMDL showed a small but signi෽icant partial correlation with gray
level (R²=.07, p=.027), we replicated this analysis by ෽irst removing
the main effect of gray level on response times, then performing a
simple linear regression on the residuals. The effect of MDL was
again signi෽icant (Figure 5.4C; encoding time: R²=.46, p=.016; choice
time: R²=.54, p=.006; between‐subjects ANOVAs, encoding time:
F(1,115)=118.2, p<.001; choice time: F(1,115)=248.1, p<.001).
Both of these effects were replicated on error rates, despite accuracy
being very high. Plots ofMDLagainst either error rates or the residuals
of error rates on gray level are shown in Figure 5.6. In both cases,
MDL signi෽icantly correlated with the dependent variable, indicating
that participants made more mistakes as MDL increased (raw R²=.51,
p=.009; after taking the residuals on gray level, R²=.48, p=.012).
We also estimated the quality of our model for shape complexity by
contrasting it withmany random competingmodels where the shapes’
MDLswere shuf෽led. The results are summarized in Figure 5.5, and al‐
low to derive p‐values that ourmodel is as predictive as it is by chance,
by counting the number of “better” random models generated when
shuf෽ling: for both encoding time and choice time, no shuf෽led model
was better, ensuring that p<.0001, and for error rates 7 out of 10000
models were better, therefore p=.0007.
To compare the effects of MDL and gray level, we also performed
a multiple‐regression analysis with both variables (normalized) as
predictors, across the 68 test shapes. For encoding time, both predic‐
tors were signi෽icant (both p<.0001; R²=.59; betas = 157.7 (Standard
Error [SE]=37.4) for MDL and 272.0 (SE=37.4) for gray level). For
choice times, both predictors were also signi෽icant (MDL: p=.0003;
gray p<.0001; R²=.53; betas = 108.7 (SE=28.8) for MDL and 182.75
(SE=28.8) for gray level). For error rates, only MDL was signi෽icant
(MDL: p=.003; gray p=.84, R²=.13; betas: =.014 (SE=.004) for MDL
and ‐.001 (SE=.004) for gray).
We also controlled for additional visual features (see Figure 5.7). For
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Figure 5.5: Bootstrap over the shapes’ MDL. For each dependent variable in separate panels, we show the
distribution of the slope of 10000 simple linear regression computed after shuffling the shapes’ MDLs. The
dashed line, on the right, indicates the slope of our (unshuffled) theory. From this we can derive p‐values by
computing the fraction of random theories that are better than our theory: this yields p=.0007 for error rates,
and ensures p<.0001 for both encoding time and choice time as no random permutation fared better.
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Figure 5.6: A, correlation betweenMDL and behavior. Left: Average Error Rates are plotted as a function of
MDL. Error bars represent one standard error across participants. Right: same results after regressing out the
effect of total luminance. B, Predictive power of the visual features. We ran a binomial GLM with all the fea‐
tures, normalized for comparison, as well as the MDL, and display the fitted coefficients and their significance,
for the error rate. Grayed out predictors were not significant in the regression, and bright orange indicates
our regressor of interest, the MDL. Predictors are ranked according to their magnitude when predicting the
choice time.
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Figure 5.7: Detailed analysis of Exp. 1 A, breakdown of the properties. For each shape, describes the
manually annotated or computed visual features. B, Predictive power of the visual features. We ran a mixed‐
effect GLM with all visual features, normalized for comparison, as well as the MDL, and display the fitted
coefficients and their significance, for both choice time and response time. Grayed out predictors were not
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each shape, we manually counted the number of extremities (variable
Nex), intersections where two lines meet (singularities, variable Ni2),
intersections where three lines meet (Ni3), intersections where four
or more lines meet (Ni4+), disconnected parts (Ndis), and ෽inally the
presence of a closed shape or not (closure). To con෽irm that the effect
of MDL did not result from a spurious correlation with these features,
we ෽irst ran a model comparison between a mixed‐effect model with
all features, gray level, and the average spatial frequency, with partic‐
ipants as random intercepts, and the same model plus the MDL. The
secondmodelwas signi෽icantly better than the ෽irst one for bothdepen‐
dentmeasures (LikelihoodRatio Test, encoding time𝜒2 = 106.4, 𝑝 <
.001; choice time𝜒2 = 169.8, 𝑝 < .001). The same result held for er‐
ror rates using binomial linear models (error rate: 𝜒2 = 107.43, 𝑝 <
.001; for this model no random effects were included, as the estimates
could not bemeaningfully ෽itted at the level of individual participants).
Figure 5.7 shows the breakdown of each shape’s property, as well as
a comparison of the predictors associated with each normalized term
in the full model. For both encoding time and choice time, the pre‐
dictor associated with the MDL signi෽icantly predicted the dependent
variable (and also for error rate, see Figure 5.6). As a ෽inal, more con‐
servative control, we computed the residuals from the ෽irst model for
each participant, then averaged those residuals over participants and
MDL levels, and examined the correlation of those residuals with MDL.
This linear model was not signi෽icant for the encoding time (r²=.04,
p=.51), but it was for choice time (r²=.58, p=.003). Inspection of the
residuals show that the “segment” shape, which is the only shape with
MDL=1, had a very high residual for the encoding time, while the other
seemed to follow the MDL pattern. After removing this outlier item,
both encoding time and choice time residuals were now signi෽icantly
predicted (encoding time: r²=.5, p=.015; choice time: r²=.63, p=.003).
For completeness, a similar strategywaspursuedwith error rates, ෽irst
taking the residuals on a binomial regression on all other predictors,
and then ෽itting a simple linear regressionwithMDLon those residuals.
The resulting trend was similar but not signi෽icant (r²=.23, p=.12).

5.3.3 Discussion of Experiment 1

As predicted, in a delayed match‐to‐sample task with geometric
shapes, participants were in෽luenced by the shape’s Minimum De‐
scription Length (MDL) in our proposed language. This result held
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at individual levels and for all measures of encoding time, choice
time and error rate, with comparable effect sizes. The effect of MDL
did not trivially arise from spurious correlation with other image
properties such as number of parts, intersections, closure, etc. While
behavior was also in෽luenced by the perceptual property of average
gray level, the effect of MDL remained even when controlling for
this low‐level effect and all other variables. Yet MDL alone did not
fully predict behavior: in a regression with many predictors, several
exhibited some explanatory power in our task. This ෽inding supports
our prior suggestion that there are two type of strategies available to
perform such perceptual tasks with geometrical ෽igures (Sablé‐Meyer,
Fagot, et al., 2021): one that encodes shapes at a visual level, based
on perceptual properties such as gray level, intersections, etc; and
one that represents them at an abstract, symbolic level, which is well
captured by our proposed language.
While this result is promising, there are many reasons to believe that
our speci෽ic language proposal is not complete, and that it would be
possible to ෽ind shapes for which the ෽it would be poor. For instance,
the complex outlines of natural objects (e.g. the contour of a recogniz‐
able animal) are completely outside of reach of our proposal, and other
theories based onmedial axis or shape skeletons would faremuch bet‐
ter (Feldman & Singh, 2006). Even within geometric shapes, and as
we further examine in the general discussion, there are shapes that
the language cannot easily describe (e.g. ovals), or properties it can‐
not easily encode (e.g. while an equilateral triangle has a low MDL,
there is no way to describe “any triangle”). Thus, while experiment 1
tested the speci෽ics of our language, experiment 2was designed to test
regularities that any such reasonable language should verify.

5.4 Experiment 2: Fundamental Laws of Repeti‐
tion, Concatenation and Embedding

To sidestep the constraints that come with choosing a speci෽ic lan‐
guage, we designed an experiment that tests, independently, the three
most fundamental aspects of our proposition, namely the existence
of operations of repetition, concatenation and (nested) embedding
(that is, recursive call to a subprogram). Those operations, available
in any modern programming language, have the highest impact on
the compressibility of shapes and help decorrelate the length of a
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program and the amount of “ink” of a shape. They allow a program
to be extremely short and yet the shape to be complex, as long as it
is highly regular. For instance, from the programs for squares and
circles, a single additional instruction suf෽ices to generate a circle of
squares, or a square of circles – and thus, this addition should just
have an additive effect on MDL.
These observations lead to the following quantitative prediction: in
any language for geometric shapeswhich includes primitives of repeti‐
tion, concatenation and embedding, the cost of complex shapes should
be the sumof the lengths of (1) the program(s) that are being repeated,
concatenated or embedded, plus (2) a ෽ixed cost for the instruction
itself and, if necessary, its operands. Consider for instance a ෽igure
formed by two shapes placed side by side: we predict its complexity
to be the sum of the complexity of each shape plus some constant for
the concatenation instruction. Likewise, the cost for a repetition of a
shape should only depend on the cost of that shape, plus a constant to
express the repetition, and a cost for the parameter ”number of rep‐
etitions”. Finally, the complexity of a ෽igure consisting of one shape
embedded in another (e.g. a square of circles) should be the cost of
each shape plus a constant for the “embed” instruction.
In summary, the following relations should hold, where 𝐶𝑝𝑙𝑥 stands
for “complexity” (at least for 𝑥 ≠ 𝑦, see below):

1. 𝐶𝑝𝑙𝑥 (𝑟𝑒𝑝𝑒𝑎𝑡(𝑥, 𝑛)) = 𝛽0 + 𝛽1 ∗ 𝐶𝑝𝑙𝑥(𝑥) + 𝛽2 ∗ 𝐶𝑝𝑙𝑥(𝑛)
2. 𝐶𝑝𝑙𝑥 (𝑐𝑜𝑛𝑐𝑎𝑡(𝑥, 𝑦)) = 𝛽0 + 𝛽1 ∗ 𝐶𝑝𝑙𝑥(𝑥) + 𝛽2 ∗ 𝐶𝑝𝑙𝑥(𝑦)
3. 𝐶𝑝𝑙𝑥 (𝑒𝑚𝑏𝑒𝑑(𝑥, 𝑦)) = 𝛽0 + 𝛽1 ∗ 𝐶𝑝𝑙𝑥(𝑥) + 𝛽2 ∗ 𝐶𝑝𝑙𝑥(𝑦)

Note that the multipliers 𝛽1 and 𝛽2 should be close to 1 if the length
of the program is the only factor that comes into play, but might ex‐
ceed 1 if additional factors intervene (e.g. interference between the
two shapes in working memory). 𝛽0, on the other hand, represent
the constant cost associated with the operation at hand and should be
strictly positive.
In experiment 2, we therefore replicated the delayedmatch‐to‐sample
with new stimuli. We selected ෽ive base shapes spanning a broad range
of predicted complexities, and used them to build new stimuli through
repetition, concatenation and embedding, with the goal of testing
whether their complexity could be predicted from the complexity of
their base shapes. Thus, we designed a total of 60 images that served
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as samples in the task : (1) ෽ive base shapes, shown in Figure 5.8;
(2) ෽ive repetitions of those base shapes, generated by showing side
by side four copies of the base shape; (3) twenty‐෽ive concatenations
corresponding to all 5x5 pairs of base shapes placed side by side; and
(4) twenty‐෽ive embeddings of a base shape inside another, generated
by drawing the outline of one shape using 8 or 9 copies of the other.
Example stimuli are shown in Figure 5.8.
In a separate group of participants, we also measured the subjective
complexity of the same shapes. We presented participants with those
60 shapes in random order and asked them to evaluate each shape’s
complexity on a scale from 0‐100.

5.4.1 Method

Participants

Participants were recruited via Twitter. One hundred and seventy
adults participated in themaindelayedmatch‐to‐sample task (71male
and 99 females), with a breakdown of 16 participants in the 18‐25 age
group, 77 in the 25‐40, 68 in the 50‐60 and 9 in the 60+. Participants
were not compensated for participating in this study. An additional
27 adults participated in the subjective ratings (15 females and 12
males). Both tasks were approved by CER‐Paris‐Saclay‐2019‐063, and
participants gave informed consent.

Procedure and Stimuli for the delayed match‐to‐sample task

The procedure for this experiment was identical to that of our ෽irst ex‐
periment, and only the stimuli changed. The stimuli were generated
from ෽ive base shapes that were piloted to vary in encoding and choice
time (square, circle, S, sigma, and square root, of respective MDL 5, 2,
10, 15, 13; see Figure 5.8). All shapes had similar amounts of ink, or
gray level: the square, sigma and square root all had four segments of
identical length, arranged differently; the circle matched the square in
length; and the S shape comprised two semi‐circles and was therefore
matched with the circle. Those base shapes were then used to gener‐
ate the 60 target stimuli for the four experimental conditions: single
shape (5 stimuli), repetition (a string of 4 identical shapes; 5 stimuli),
concatenation (2 shapes side by side; 5x5=25 stimuli), and embedding
(an inner shape was presented at the usual size, but in 8 or 9 copies
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B1. Single shape B2. Repetition

B3. Concatenation B3. Embedding

A Base

Shape

Local

Deviant

Figure 5.8: Stimuli used in experiment 2. A, the 5 base shapes which were presented alone and in combi‐
nations, and the corresponding deviant shapes. B, Examples of screens presented during the choice phase in
the four conditions of the experiment (randomly intermixed): single shape, repetition of a base shape, con‐
catenation of two base shapes, and embedding of a base shape into another. In each case, the sample image
which was presented during the encoding phase is highlighted, and the other cells of the 2x3 grid illustrate
the diversity of distractors. A distinct group of subjects also gave subjective ratings of complexity for each
stimulus.
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that formed the outlined of a second, outer shape; 5x5=25 stimuli).

Each of those 60 stimuli served as samples for the delayed match‐to‐
sample task. During the choice period, the sample stimulus was inter‐
mixed with 5 distractors, which were generated in order to prevent
short‐cut strategies and maximize the need for a full identi෽ication of
the target shape. For each base shape, we designed a local deviant by
removing one fourth of the shape (seeFigure5.8). For the single shape
and the repetition conditions, thedistractorswere (1) adistractor from
the same condition, but using the local deviant instead of the target, (2)
a distractor from the same condition, but using a different shape, (3)
three distractors drawn from each of the other three conditions, and
sharing at least one shape with the target. For the concatenation con‐
dition, the distractors were (1) a concatenation distractor where one
of the two shapes was replaced by its local deviant; (2) two concatena‐
tion distractors where either the left or right shapes were replaced by
a different base shape, (3) one distractor from the embedding condi‐
tion, using the same two shapes as the left and right shapes, assigned
randomly to embedded and embedding, (4) one distractor from the
repetition condition, using randomly either the left or the right shape.
Similarly, for the embedding condition, the distractors were (1) a dis‐
tractor from the embedding condition, with the same outer shape but
the inner shape replaced by its local deviant; (2) two embedding dis‐
tractors where either the outer or the inner shape was replaced by a
different base shape, (3) one distractor from the concatenation condi‐
tion, but using the same two shapes as the inner and outer shapes, (4)
one distractor from the repetition condition, using either the inner or
the outer shape. Our logic was that this set of distractors covered a
broad range of programs in the proposed language, each with a small
local change or “bug” – thus forcing subjects to search for the shape
whose description exactly matched the sample. Figure 5.8B shows,
for each condition, an example of a target and ෽ive possible distractors.

In addition to those 60 trials, 10 initial training trials allowed partici‐
pants to get used to the task ෽low and to the dif෽iculty level of themem‐
ory task. Training trials were generated similarly, but using three dif‐
ferent base shapes and the same exact procedure. The experiment pro‐
ceeded seamlessly from training to testing trials, without any notice.
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Procedure and Stimuli for Subjective Complexity Ratings

Upon clicking on a link from the twitter message, participants landed
on an experiment designed with jsPsych (de Leeuw, 2015). The ex‐
periment started with a consent form as well as a small demographic
questionnaire for age group and sex. Then they were presented with
instructions for the task: using sliders from 0‐100, they had to give
a complexity rating to each of the 60 sample shapes. To familiarize
themwith the type of shapes, the instructions included 24 shapes that
did not appear afterward. We highlighted in the instructions that they
should focus on trying to be consistent across shapes. Participants
were then presented with all 60 shapes in a shuf෽led order. Partici‐
pants could freely look at the shapes in any order and change their
rating until they were satis෽ied. The task took a median time of 6:34
minutes to answer (1st quartile, 4:48; 3rd quartile, 9:36.).

5.4.2 Results

None of the subjective rating data were rejected. For the delayed
match‐to‐sample task, the error rate was low (3.39%), and we
removed data following the same strategies as in experiment 1 (7
participants and 3.16% trials rejected). Because the accuracy was
very high across most conditions, we restricted our analyses to
encoding time, choice time and subjective complexity. Figure 5.9
shows these three dependent variables for each of the 60 stimuli, as a
function of the base shape(s) used to generate them.

First, we veri෽ied that, in the single‐shape condition, all three depen‐
dent measures varied across the 5 base shapes we selected (ANOVAs
where participantswithmissing datawere removed, all p<.01). For en‐
coding and choice times, the increase was roughly as follows: square
and circle were roughly on par, and then the response times increased
for the S, sigma and square‐root shapes, in this order. Note that this or‐
der is close to, but not strictly identical to theMDLordering, whichwas
circle, square, S shape, square root and sigma. The subjective ratings
followed a noisier pro෽ile, but still ranking the last two shapes as more
complex than the ෽irst 2, with an overall ordering close to the one pre‐
dicted by MDL. A one‐tailed student test on the distribution of slopes
across participants in a simple linear regression with MDL con෽irmed
that MDL signi෽icantly correlated with all three measures (encoding
time p<.001, average r² across subjects 𝑟2

𝑎𝑣𝑔=.30; choice time p<.001,
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Figure 5.9: Results of experiment 2. The three behavioral measures (encoding time, choice time, and
subjective complexity) are shown for the 60 different stimuli, grouped into repetition (left), concatenation
(middle), and embedding (right). The conditions are sorted as a function of base shape complexity. Note that
the single‐shape condition is shown in the repetition panel (number of repetitions = 1), and that the data from
the concatenation of two identical shapes appears twice (as number of repetitions = 2 in the left panels, and
as dots connected by a gray line in the middle panels). Similarly, the data for “self‐embedded” shapes (e.g.
a square of squares) appear with a gray line in the right panels). In each panel, we show the coefficient of
determination and statistical significance of the associated model (equations [1‐3] in the main text). Error
bars indicate standard errors across subjects.
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𝑟2
𝑎𝑣𝑔=.40; subjective p=.004, 𝑟2

𝑎𝑣𝑔=.55).

We then examined whether, when those shapes entered into more
complex stimuli, the complexity still varied in a similar way, pre‐
dictable from equations [1‐3]. In the repetition condition with 4
identical shapes, a signi෽icant, monotonic pro෽ile of response was
observed for all three dependent measures (ANOVAs where par‐
ticipants with relevant missing data were removed, encoding time
F(4,576)=53.88; response time F(4,576)=36.87; subjective rating
F(4,104)= 6.63; all p<.001). Similarly, we analyzed just the stimuli of
the concatenation condition where two identical shapes were placed
side by side, thus corresponding to a repetition of 2. Again, for all
dependent measures, a signi෽icant, nearly monotonic increase was
seen across the 5 base shapes (participants with missing data re‐
moved; encoding time, F(4,576)=32.20; choice time F(4,576)=41.01,
; subjective F(4,104)=15.29; all p<.001). Importantly, the curves for
single shape, 2 repetitions and 4 repetitions were nearly parallel to
each other, as predicted by our equations for MDL. To test this idea,
we entered all 3 conditions into a mixed‐effect linear model with two
main factors and their interaction, i.e. the repeated shape (5 levels),
and the number of repetitions (numerical factor spanning 1, 2 or 4
repetitions). As shown in Figure 5.10, we found main effects for each
measure, in agreement with equation [1]. There was no signi෽icant
interaction with the number of repetitions for both subjective rating
and choice time, in agreement with equation [1], but a signi෽icant
interaction was found for encoding time. To measure the relative
importance of the interaction term, we estimated the amount of the
෽inal model’s variance due to the interaction term (last columns of
Figure 5.10) by comparing the marginal r² (Nakagawa et al., 2017) of
both the full model and themodel without the interaction. For the rep‐
etition condition, this indicated that even when the interaction term
is signi෽icant, it accounted for less than 10% of the explained variance
in all three dependent measures, and was therefore dominated by the
main effect of shape and number.

For the concatenation and embedding conditions, as shown in Figure
5.9, encoding time, choice time, and subjective complexity also
increased with each of the two shapes involved (left/right or in‐
ner/outer). Equations [2] and [3] predicted that these effects should
be similar to the single shape condition and should not interact.
Figure 5.10 shows the results of mixed effect linear models, but now
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Repetition   Shape Number Interaction r² inter. 

  Subjective F4,369=2.95 p=.020 F1,369=11.56 p<.001 F4,369=0.88 n.s. 0.05 

  Encoding  F4,2215.25=4.66 p<.001 F1,2215.10=185.21 p<.001 F4,2215.17=14.86 p<.001 0.08 

  Choice F4,2215.41=28.31 p<.001 F1,2215.23=35.75 p<.001 F4,2215.31=0.76 n.s. <.01 

Concatenation   Left shape Right shape Interaction r² inter. 
 Including Subjective F4,624=22.16 p<.001 F4,624=16.71 p<.001 F16,624=3.83 p<.001 0.28 

self-concatenated Encoding F4,3796.63=52.88 p<.001 F4,3796.54=45.02 p<.001 F16,3796.56=27.67 p<.001 0.53 

 shapes Choice F4,3797.13=76.72 p<.001 F4,3796.97=58.94 p<.001 F16,3797.01=25.77 p<.001 0.43         
  

 Excluding Subjective F4,494=25.85 p<.001 F4,494=20.80 p<.001 F11,494=0.45 n.s. 0.03 

self-concatenated Encoding F4,3004.67=57.78 p<.001 F4,3004.59=50.76 p<.001 F11,3004.66=1.85 p=.041 0.05 

 shapes Choice F4,3005.32=78.42 p<.001 F4,3005.18=63.97 p<.001 F11,3005.31=2.16 p=.014 0.05 

Embedding   Outer shape Inner shape Interaction r² inter. 
 Including Subjective F4,624=66.58 p<.001 F4,624=28.54 p<.001 F16,624=0.90 n.s. 0.03 

self-embedded Encoding F4,3786.68=119.23 p<.001 F4,3786.67=61.62 p<.001 F16,3786.70=3.64 p<.001 0.07 

 shapes Choice F4,3787.10=115.12 p<.001 F4,3787.08=118.95 p<.001 F16,3787.12=6.74 p<.001 0.1         
  

Excluding Subjective F4,494=55.57 p<.001 F4,494=24.90 p<.001 F11,494=0.42 n.s. <.01 

self-embedded Encoding F4,2996.89=103.49 p<.001 F4,2996.79=55.88 p<.001 F11,2996.82=1.20 n.s. 0.02 

 shapes Choice F4,2997.45=111.20 p<.001 F4,2997.29=110.49 p<.001 F11,2997.33=3.74 p<.001 0.05 

 

Figure 5.10: Mixed effectmodeling of data from Experiment 2 The table shows the statistics ofmixed effect
models applied to our three main conditions (Repetition, Concatenation and Embedding) and to our three
dependent variables (Subjective Rating, Encoding time and Choice time). In each case ourmodel had twomain
effects and their interaction, plus a single random effect of the participant. P‐values were computed using the
Kenward‐Roger approximation for degrees of freedom. For Repetition, the main effects were the repeated
shape (5 levels), and the number of repetitions (numerical factor in 1, 2 or 4, respectively for the shape alone,
for the concatenation of two identical shapes, and for the repetition condition). For Concatenation, the main
factors were the shape on the left and the shape on the right. For embedding, the main effects were the
outer/embedding shape, and the inner/embedded shape. For Concatenation and Embedding, we ran the
model a second time after removing the stimuli in which the same base shape was used twice (e.g. two
squares, or a square of squares). The rightmost columns measure the proportion of the full model’s r² (fixed‐
effects only, approximated using the marginal r² from (Lüdecke et al., 2021; Nakagawa et al., 2017)) that is lost
when removing the interaction term, to approximate the explained variance due to the interaction terms.
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with the shapes as two 5‐level factors. Startingwith the Concatenation
condition, for all 3 dependent variables, we found signi෽icant effects
of both the shape on the left and the one on the right, as predicted.
Importantly, the interaction term was also signi෽icant. However, there
was a very simple explanation: the 5x5 design matrix for concate‐
nation included a diagonal of 5 stimuli in which the left and right
shapes were identical. In this case, our theory predicts that these
stimuli should be compressible using the repetition instruction, and
therefore easier to perceive than other concatenation stimuli. This
is exactly what we found: as seen in the middle panels of Figure 5.9
(where, for simplicity, those data points are connected by a gray line),
the repeated stimuli stood out as faster and subjectively less complex
than the corresponding concatenation stimuli. Correspondingly, the
fraction of explained variance due to the interaction term in the full
model was high (ranging from 28% to 53%) across all three measures.
However, when we removed the conditions where both shapes were
identical from the mixed‐effect model (Figure 5.10), the proportion
of explained variance collapsed to 5% or less for all dependent
measures, even when the term remained signi෽icant, in accordance
with equation [2].

Finally, we ran the same analysis on the embedding condition, using
both embedded and embedding shape as the 2 factors, plus their
interactions. Again, both main effects were signi෽icant on all 3 de‐
pendent measures, as predicted by equation [3]. However, as in the
concatenation condition, the interaction term had a signi෽icant effect
on encoding time and choice time, which our additive equations did
not predict – albeit these interaction terms’ proportion of explained
variance were low, ranging from 3% to 10%. Inspired by our analysis
of concatenation, we plot separately the “self‐embedding” trials, in
which the same shape was used at the inner and outer levels (e.g.
a square of squares, a circle of circles, etc). In Figure 5.9 (right
panels), we can see that those data points again yielded lower values
than the others (i.e. lower subjective complexity, faster encoding
and choice times). When we excluded those self‐embedding trials
from the mixed‐effect model, the proportion of explained variance
associated with the interaction term were reduced, indicating that
the model’s explained variance was dominated by the main effects,
especially in the absence of self‐embedded shapes. Although those
observations were not predicted, they are minor compared to the
main effects, and can easily be accommodated: it appears that the
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mental representation of a “square of squares” involves a saving,
because both the embedded and the embedding shapes are identical,
and thus presumably parts of the mental program are reused twice.

We further tested the predictions of equations [1‐3] using General Lin‐
ear Models (GLMs). Those equations imply that we should be able to
accurately reconstruct the complexity of composite shapes from that
of the ෽ive base shapes. To test this, we ෽itted generalized linearmodels
on each of our dependent variables after averaging data across partic‐
ipants for each item (Figure 5.9; all ෽itted values are provided in Fig‐
ure 5.1). First, wemodeled the repetition conditions (base shape, two
shapes, and four shapes) by predicting, for each dependent measure,
its value for a given trial as a linear function of its value in the single
shape condition and the number of repetitions. This model was sig‐
ni෽icant for each of our three dependent variables, and all predictors
were signi෽icantly different from 0 (all p<.05; subjective rating, R²=.62;
encoding time, R²=.90; choice time, R²=.89). The ෽itted coef෽icients for
the shape termwere all close to one (non‐signi෽icantly different from1
for both subjective complexity and choice time, and only slightly larger
than 1 for encoding time), suggesting that base shape complexity was
directly re෽lected in the complexity of the repeated shape.

Similarly, we modeled the concatenation condition by predicting the
complexity of a trial with a linear combination of the complexity of the
left shape, the complexity of the right shape, and a dummy variable
(termed IsSelf) forwhether the left and right shapeswere identical (as
these trials are instances of repeat and should have a lower percep‐
tual complexity). This model was signi෽icant for each of our three de‐
pendent variables, and all predictors were signi෽icantly different from
0 (see Table 2; all p<.05; subjective, R²=.64; encoding, R²=.85; choice,
R²=.89). The coef෽icients for both left and right shapes were not sig‐
ni෽icantly different from 1 at the p<.05 level, indicating that both con‐
tributed equally and directly, as predicted from equation 2. The IsSelf
predictor was always signi෽icantly negative, indicating a saving when
both shapes are identical.

Finally, we applied the samemodel to our embedding condition. Again,
a good ෽it was found, with signi෽icant effects of both shapes for all de‐
pendent measures (see Table 2; all p<0.05; subjective, R²=.53; encod‐
ing R²=.64; choice R²=.86). In this between‐items analysis the impact
of self‐embedding did not reach signi෽icance but the trendwas present
(subjective rating p=.33; encoding time p=.14; response time p=.06).
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This is compatible with the low proportion of explained variance asso‐
ciated with the interaction term described in the mixed‐effect models:
in order to reach signi෽icance, a less sensitive analysis may not indi‐
cate that a given small effect signi෽icant despite identifying the correct
trend. This time, the slopes tended to be higher than 1, although this
reached signi෽icance only in the case of encoding time for the outer
shape. Wealso observed a trend towards a larger in෽luence of the outer
shape compared to the inner shape, consistent with the outer shape’s
greater visual impact, but again this effect was only signi෽icant in a
single dependent measure (subjective ratings). Those minor trends
notwithstanding, the main ෽inding is that the data supported equation
[3]: even when we made the visual pattern much more complex by
embedding one shape inside another, thus creating for instance a cir‐
cle of squares, the ෽inal complexity was still only a linear function of
the complexity of the individual shapes.

Table 5.1: Coefficients resulting from the General Linear Modeling of Experiment 2.
The table shows, for each shape type (repeat, concatenate, and embedding), each de‐
pendent variable (subjective rating, encoding time or choice time), and for each variable
in the model (in columns), the value of the regression slope, associated standard error,
and whether the effect is significantly different from 0 (*, p<.05; **, p<.01; ***, p<.001).

Repeat Shape
Number of
repetitions

Subjective 0.88 ± 0.23** 1.98 ± 0.89*
Encoding 1.37 ± 0.15*** 87.69 ± 16.45***
Choice Time 1.05 ± 0.11*** 47.31 ± 19.1*

Concatenate Left shape Right shape IsSelf
Subjective 0.72 ± 0.2** 0.67 ± 0.2** ‐8.33 ± 2.37**
Encoding 0.92 ± 0.17*** 0.89 ± 0.17*** ‐433.15 ± 55.29***
Choice Time 0.96 ± 0.12*** 0.81 ± 0.12*** ‐521.96 ± 63.28***

Embedding Outer shape Inner shape IsSelf
Subjective 1.84 ± 0.43*** 0.95 ± 0.43* ‐5.26 ± 5.27
Encoding 1.94 ± 0.45*** 1.83 ± 0.45*** ‐222.82 ± 148.07
Choice Time 1.29 ± 0.16*** 1.23 ± 0.16*** ‐169.22 ± 85.43

5.4.3 Discussion of Experiment 2.

Participants’ behavior matched the additive properties predicted by
equations 1 through 3: the complexity of complex patterns could be
decomposed into the sum of the complexity of constituents. This prop‐
erty was observed in three different metrics that we collected as prox‐
ies for the complexity of the mental representation of shapes: subjec‐
tive complexity ratings, encoding times and choice times in a delayed
match‐to‐sample task.
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More speci෽ically, and following the equations, the following three re‐
sults were veri෽ied: [1] the complexity of the mental representation
of n identical shapes is the complexity of the mental representation of
the shape, together with a cost that increases with n; [2] the complex‐
ity of the mental representation of two different shapes side by side is
the sum of their respective complexities; and [3] the complexity of the
mental representation of a shape drawn in outline using several small
copies of a different shape (which we called embedding) is predicted
by the sum of their respective complexities. The latter ෽inding is the
most interesting, as intuition alonemight have predicted a product op‐
eration – after all, the overall pattern comprises as many copies of the
inner shape as needed to draw the outer shape. However, the predic‐
tion from the language of thought perspective is clear enough: drawing
a square of circles is not muchmore complex than drawing a square it‐
self – it merely requires stopping the square program at regular inter‐
vals to call a subprogram for drawing a circle, and in ෽irst approxima‐
tion, such embedding only has a linear effect on total complexity. Of
course, this is only true in ෽irst approximation – our square of circles,
for instance, comprised additional circles not only at the vertices of the
square, but also in themiddle of its sides, thus requiring a slightlymore
complex square‐drawing program. Such subtleties, which require fur‐
ther investigation, may explain why the slopemeasuring the impact of
the outer shape on the complexity of the overall pattern tended to be
larger than 1 for embedded shapes (see Table 2).

Two other salient effects emerged, one which could be predicted from
equations [1‐3] and another which could not. First, when concatenat‐
ing two identical shapes, the resulting shape can be either described
as a repetition or as a concatenation – but our language of thought
predicts that programs involving repetition are shorter, and therefore
that the complexity of a pair of shapes should be lower than predicted
by concatenation alone. Our data supports this prediction: concatena‐
tions of two identical shapes have a lower complexity than predicted
by the sum of the complexities of the two shapes, each with their re‐
spective coef෽icients, indicating that identical shapes induce a saving.
Second, unexpectedly, the same phenomenon occurred in the embed‐
ding conditionwhen a shapewas outlined using a smaller version of it‐
self (“self‐embed” trials, e.g. a square of squares). Once again, the data
points to the lower complexity of those trials, compared to those using
twodifferent shapes. Such a saving is not captured by our equations. It
suggests that in themental representation of e.g. “a square of squares”,
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the two squares may be represented by a single mental program or at
least by some degree of sharing of working memory resources. This
interesting ෽inding supports the idea that human mental representa‐
tions allow for named subprograms, recursive calls, or higher‐order
functions over functions, which are not fully captured by the present
language.
Overall, Experiment 2 goes beyond experiment 1 in showing that, over
and above the speci෽ic complexity predicted by the particular geomet‐
rical language we proposed, there are several properties of additivity
that must be satis෽ied by any such language, and that these properties
are true of the human working memory for geometric shapes.

5.5 General Discussion

Previous research has emphasized that all humans inherit, from evolu‐
tion, core knowledge of space and number that they share with many
other animal species (Dehaene et al., 2006; Feigenson et al., 2004).
Here, we propose that, in humans, those core systems can also be re‐
combined using a language of thought in order to form complex men‐
tal programs. As a result, humans are able to form complex, compo‐
sitional thoughts such as “three parallel lines”, “repeat a pattern four
times”, or “arrange some circles in the shape of a square”.
In the present work, we argued that such combinatorial mental
representations underlie human perception and working memory
for geometric shapes, and we put this hypothesis to several tests.
First, we proposed a concrete language inspired by observations on
prehistoric and ethnographic geometric patterns (featuring abstract
patterns, right angles, parallel lines, circles and spirals) as well as
elements from the core‐knowledge literature (number sense). We
tested this language in Experiment 1 and showed that it could predict
the behavior of participants in a shape memory task, above and
beyond lower‐lever perception mechanisms. In Experiment 2, we
further showed that theoretically motivated additive equations for
the complexity of composite shapes characterize humans' subjective
ratings and objective behavior in a delayed match‐to‐sample task,
thereby constraining the properties that must be satis෽ied by any
proposition for a language of thought for geometric shape.
The proposed theory of shape perception assumes that humans can
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ef෽iciently infer a mental program from a visual percept, a problem
known in computer science as “program induction”. The idea that hu‐
mans infer mental programs was previously shown to successfully ac‐
count for human concept learning (Lake et al., 2015; Rule et al., 2020),
including hand‐drawn sketches (Ellis et al., 2018). However, program
induction is a computationally challenging problem. Enumerating all
possible programs until a match is discovered is not a plausible strat‐
egy, as the search time would scale exponentially with the size of the
program. We showhow recentwork from the program‐induction liter‐
aturehelps tackle this problembyusingDreamCoder (Ellis et al., 2021)
to ෽ind the best representation for several shapes. DreamCoder uses a
bottom‐up neural network to speed up the search for the relevant pro‐
gram. In DreamCoder, the network is trained tomap each visual shape
onto biases that accelerate the search for the relevant program. Future
versions could incorporate direct mappings from shapes to programs,
thus leading to the immediate recognition of shapes close enough to
the training set. What is remarkable about this idea is that the system
does not need any external training data (although successfully solved
problems will be used when training, much like replays, in addition to
“dreams”): it can generate its own supervised learning dataset by sam‐
pling programs, executing them to produce the corresponding shapes,
and then training a neural network to perform the backward inference
from shape to program. The notion of “inner training” is an interesting
metaphor for how humans may explore, in a purely mental manner,
the domain of geometry and discover interesting properties on their
own, without external inputs. This is possible if we assume, as René
Descartes did in the introductory citation, that our mind already has
the ideas, at least in the form of a large space of potential mental pro‐
grams.

To further accelerate its search, the DreamCoder algorithm looks for
subprograms that are reused across several shapes. This mechanism
is useful to go from simple shapes to more and more complex ones,
as each new success offers the possibility of discovering new abstrac‐
tions. This mechanism changes the topography of the search space by
bringing certain shapes (those that leverage the discovered abstrac‐
tions) closer to the effectively searchable threshold for program induc‐
tion: while all shapes remain accessible, some of them become much
simpler as they can be expressedmore succinctly using the discovered
abstractions. This mechanism could explain cultural drifts in the style
of geometrical patterns,whereby a givenhumanculture focuses on cer‐
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tain shapes and their variants, thus producing, over time, a variety of
similar‐looking patterns.

The core of our proposal builds upon Leyton’s (Leyton, 1984, 2003)
seminal proposal of a generative theory of shapes. Leyton’s theory
stipulates that all shapes are constructed in a bottom‐up fashion by
a sequence of operations, called “control groups”, starting from a sin‐
gle point. For example, the mental representation of a cube would be
the extrusion across the z‐axis of a square, which itself would come
from turning a segment 4 times around a central point. The segment
itself would be built by translating the starting point along an axis. The
unpublished experiments brie෽ly mentioned by Leyton (Leyton, 1984)
seem to have probed those hypotheses only indirectly, for example by
asking participants to perform intuitive judgements about the stability
of certain shapes. While less general and con෽ined to two dimensions,
our proposal is supported by direct empirical tests of the mental com‐
plexity of shapes.

Earlier work by Leeuwenberg (E. L. Leeuwenberg, 1971) also intro‐
duced a language for shapes, particularly focused on the idea of nested
repetitions with variations and the concept of continuous integration
as a complement of discrete repetition capable of tracing curves. How‐
ever, Leeuwenberg’s language only satis෽ied one direction of the in‐
tended correspondencebetweenmental and linguistic complexity: the
language was such that low‐complexity mental representation corre‐
sponded to a short program, but the converse was not true as some
short programs generated shapes that were not easily parsed by hu‐
mans. Nevertheless, the behavioral results he reported are in linewith
ours: he found the length of the shortest program is a good predictor
of subjective ratings of complexity, as well as objective performance in
shape copying and other similar tasks (Boselie & Leeuwenberg, 1986;
E. L. Leeuwenberg, 1969, 1971; see also Restle, 1970, 1973).

More recently, several articles highlighted the importance of the no‐
tion of repetition with variation in the human perception of geometric
and auditory sequences (Amalric et al., 2017; Piantadosi et al., 2016;
Planton et al., 2021; Roumi et al., 2021; Simon, 1972). The language
෽irst proposed by Amalric et al. (2017) included two distinct notions
of repetitions with variations, either changing the starting point with
each repetition, or changing a parameter with each repetition. Our ge‐
ometric language generalizes this idea to the case of continuous curve
tracing. Our tracing primitive can be considered a particular case of
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in෽initesimal repetition with variation: at each time step, parameters
are updated for the computation of the next time step. Importantly, we
did not allow for arbitrary in෽initesimal repetition like what is present
in the Logo language (Abelson et al., 1974), where at each time step
arbitrary computations can occur. While such computations were re‐
quired in the original logo in order to draw curves by in෽initesimally
changing the heading at each time step, it also opened the possibility
of short programs having extremely complex outputs. By limiting our‐
selves to simple, linear variations of speed or turning angle over time,
our language ෽its with the universal presence of a limited set of shapes
(mostly lines, circles and spirals) in human geometric patterns.

Another, more speculative aspect of our proposal is that a recursively
compositional language of thought for geometry is unique to humans.
As also proposed by others, only humans would possess a recursive
compositional capacity (Dehaene et al., 2015; Fitch, 2014; Hauser et
al., 2002; Penn et al., 2008). Thus, an important goal for the future is
to explicitly test the perception of the present shapes in non‐human
primates. Our recent work (Sablé‐Meyer, Fagot, et al., 2021) shows
that, even for shapes as simple as quadrilaterals, human behavior dif‐
fers strikingly from baboons and is characterized by a symbolic geo‐
metrical regularity effect: in humans only, regular quadrilaterals such
as squares, rectangles or parallelograms (which can be compressed in
the present language) are easier to perceive than less regular ones. Ba‐
boon behavior was not random either, it but could be captured by ex‐
isting neural network models of the ventral visual pathway for object
recognition. Accounting for behavioral data frompreschoolers and hu‐
man adults without formal education, however, always required both
the object recognition model and the symbolic geometry model. Thus,
two strategies seem to be available for geometric shape perception: a
purely visual strategy, available to both baboons and humans, and a
symbolic geometry strategy, putatively available only to humans. It is
important to take this dual‐route model into consideration when test‐
ing the present idea: if the stimuli can be too easily discriminated by
object recognition alone, then humans may not make the effort to en‐
code them symbolically, in the proposed language of thought, andMDL
may cease to determine performance (as we observed in pilot data).
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5.5.1 Limits of our language

The language we proposed is severely limited in scope: it only applies
to the perception and drawing of geometric shapes. While it could
plausibly draw a human stick‐෽igure that might meaningfully compare
with, say, children’s drawings, tracing the contours of a human body
or any other realistic shape is outside the reach of our proposal.
This aspect separates the present work from related research on
contour perception (Feldman, 2001; Feldman & Singh, 2005; Wilder
et al., 2016), which offers theories of smooth continuous contours for
natural objects or arti෽icial blobs. It also sets our work apart from
a longstanding literature on the determinants of shape perception,
such as skeletal representation or medial axis extraction (Ayzenberg
et al., 2019; Ayzenberg & Lourenco, 2019; Blum, 1973; Firestone &
Scholl, 2014; Lowet et al., 2018). In the future, it would be interesting
to examine whether the two approaches can be uni෽ied, as they share
some converging ideas, such as the use of probabilistically generative
models for ෽inding a candidate skeleton of a shape (Feldman & Singh,
2006) or ෽inding subgroups within a complex shape (Froyen et al.,
2015), but also some challenging experimental results, such as the
automatic extraction of medial axes even for triangles or rectangles
(Firestone & Scholl, 2014). In a sense, the two approaches are com‐
plementary: there are many visual domains for which our language
is not well suited, e.g. predicting the complexity of the contour
outline of an animal, where a skeleton‐based approach is superior;
but our proposal is intended to explain another domain, abstract
geometric shape, and identify the core tools required to account for
their perception and production in humans.

Simple arguments show that the proposed language can generate
most of the geometric shapes that humans ෽ind simple and that are
frequently attested in human cultures as well as in the history of
geometry. Any regular polygon, for instance, such as an equilateral
triangle, can be generated by a program similar to the square, but
using fractions of a right‐angle turn; the pseudocode would read:
Repeat p times { Trace ; Turn(angle=4/p ) }. Stars with
various numbers of branches can be similarly generated. Less regular
polygons, such as a rectangle approximating the proportions of the
famous golden section, can be generated using fractions (e.g. 5/3
or 8/5). Symmetrical patterns and friezes such as or arise
naturally from recursive combinations of repetitions and alternations.
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Finally, using concatenation or embedding, these patterns can be
combined to generate, for instance, a pentagram (star inside a circle),
a circle of circles, etc.

Nevertheless, some simple ෽igures remain dif෽icult to generate with a
short program. A trapezoid, for instance, comprises two parallel sides
interrupted by two arbitrary segments. Drawing a trapezoid in our
language requires a turn by an arbitrary angle α, followed by a second
turn by 2‐ α to restore parallelism. However, our language does not
have variables that could store the value α, and hence does not ෽ind
this shape simpler than an arbitrary quadrilateral with turns α and
β. In general, our approach is unable to encode a partial regularity
inside an otherwise arbitrary ෽igure. The addition of local variables
could address this limitation, but exploration of this idea suggested
that straightforwardly adding variables has a high cost: while they al‐
lowone to express otherwise hard to describe simple shapes, they also
make very complex shapes easy to describe, an undesirable feature
that is hard to keep in check.

There are also shapes for which our language proposes implausible
programs. For instance, the minimal program that draws a “+” shape
repeats four segments starting from the center, instead of drawing the
shape using two intersecting segments. As for continuous shapes, our
program cannot account for some simple shapes such as the ellipse or
parabola. These shapesmight be better represented as visual transfor‐
mations of the outputs of another program (e.g. compressing a circle
to get an ellipse). Such a dual‐mode system, combining the generative
and transformative capacities of mental imagery, has been proposed
by others (e.g. Kosslyn, 1980; Leyton, 2003; Shepard & Cooper, 1982).
The addition of a buffer in which mental operations such as rotations
or shearing could be applied would be an important addition to the
present work.

Although our model was not designed with Gestalt con෽igurations
in mind, it might capture some, if not all, of the perceptual and
memory savings associated with Gestalt stimuli. For instance, shorter
programs would be allocated to displays in which shapes are aligned,
repeated, or otherwise obey “good continuation” rules. Some con෽ig‐
urations based on closure may be captured when the phenomenon
requires alignments of parts of the stimuli, as those may be generated
with shorter programs than the counterparts that don’t induce
closure (e.g. a Kanisza triangle versus a “misaligned” alternative,
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which is costlier to express). However, as noted in (Kanizsa, 1976),
“[Geometric regularity] is not a necessary condition for the formation
of subjective surfaces and contours. Amorphous shapes are possible
and irregular ෽igures can generate contours.” Such examples, as well
as ෽igure‐ground con෽igurations, seem out of the scope of the current
proposition, but have been given Bayesian accounts, see for example
(Feldman, 2001; Goldreich & Peterson, 2012).
Finally, in the present framework, each program must contain all the
instructions to generate a given shape in every detail. An unfortunate
consequence is that a largepart of this program is repeatedwhena sub‐
ject learns a new but related shape. For instance, the triskelion ( ) in‐
cludes a detailed subprogram for a spiral, although the same program
may have been used to describe other shapes. The DreamCoder algo‐
rithm sidesteps this by inventing abstractions over several iterations,
but this feature is not part of the language itself. Itmay be useful to add
to our language a capacity for named subprograms, such that the spiral
program would be encoded just once and evoked by a single call to its
procedure name (“spiral”), thus further increasing the human mem‐
ory compression rate. The idea that humans construct complex geo‐
metrical concepts by progressively developing a vocabulary of nested,
increasingly complex ones, is an appealing view of mathematical de‐
velopment that should be the focus of future work.

5.5.2 Future Directions

We see several promising research directions to go beyond the present
work. A ෽irst one, drawing inspiration from Kosslyn, Shepard and Ley‐
ton’swork,would allow for furthermentalmanipulationof the outputs
of the present language, thus performing operations such as deforma‐
tions, rotations, or even extrusions as a post‐processing step. This
would open up to the modeling of 3‐D shape, for instance using rota‐
tion arounda ෽ixed axis. A secondwouldbedevelop a library of increas‐
ingly complex and reusablenamedsubprograms, suchas “square”, “spi‐
ral”, etc. Finally, a third possibility would be to integrate ideas from a
different programming paradigm. The language we used is imperative
in nature: its programs describe, in every detail, the sequence of op‐
erations needed to draw a shape. However, not all programming lan‐
guages work that way. Logic programming languages such as Prolog
describe the logic of the computation and its constraints rather than
the details of its execution ෽low. Such constraint‐based programming
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may be closer to how humans think, particularly in the mathematical
domain. The canonical de෽inition of a circle, for instance, involves a
constraint (equidistance from a center point) rather than a genera‐
tive program (turn by a ෽ixed curvature, as in the present language).
Integrating both declarative and imperative elements may provide a
better account of speci෽ic shapes, such as trapezoids or generic trian‐
gles, which only possess some properties (e.g. two parallel sides, or
three sides) while leaving the other details unspeci෽ied. Some geomet‐
rical shapes could thus be de෽ined in terms of properties that they sat‐
isfy, others in more detailed imperative instructions, and both could
be reused in control structures such as embed or repeat. Meanwhile,
we surmise that the present proposal merely brings us one step closer
to understanding how abstract mathematical and geometrical objects
are mentally encoded.

5.6 Addendum Post‐Publication

A few additional results came out since the submission of the article
that constitutes chapter 5, and while they are not ෽inal yet, they are
worth mentioning. In pursuing the idea that access to the symbolic
representation of geometric shapes, the ෽irst experiment of this chap‐
ter was adapted to allow baboons to take it. Minor modi෽ications were
required, and subsequently we retested humans with the new varia‐
tion, providing us with a replication.

First, we tried to replicate the exact same task with a slightly differ‐
ent spatial organization of the target and the distractors in baboons.
However, baboons did not utilize at all the possibilities offered by the
self‐paced looking time, and instead all subjects looked as brie෽ly as
they could (average 100ms) to move on to the next step, making the
experiment substantially different: with very little time to study the
shape, the selection amidst distractors becomesmuch harder andmay
be driven by different factors. Therefore, we also replicated the experi‐
mentwith a forced, 1000ms looking time; we therefore distinguish the
“fast” condition and the “slow” condition. Separately, replicated both
the slow and the fast condition in new groups of adults tested online.

5.6.1 Experiment 3

203



5 A language of thought for the mental representation of shapes

Press on screen

to start

Presentation

time

Delay

Chose correct shape

Increase number of distractors (3 to 6)

Increase size difference between target and match (scale 1x to 2x)

Train

Generalize

Figure 5.11: Training procedure used with the baboons. The task was a delayed match‐to‐sample, and sev‐
eral training steps were designed. Top‐left: structure of a trial. Center‐right: all training stimuli used. Bottom:
example trials from 8 out of the 20 successive training steps.

204



5.6. ADDENDUM POST‐PUBLICATION

Population

The baboon population was identical to the one tested in chapter 1.
In total, 12 baboons reached the end of the training and performed
enough test to be reported in the “fast” condition, and 9 in the “slow”
condition. Additional methodological and ethical details are provided
in the method section of chapter 1.
One additional group was recruited for the human adult experiments,
in the fast condition; data for the “slow” condition is the one reported
in the experiment 1 above, with self‐paced encoding time. In the fast
conditions, 560 participants were recruited. Demographics were self‐
reported and a few aberrant values were given but we did not remove
participants based on that: the distribution averages at 37.7 years old,
1st quartile 28, 3rd quartile 45, SD=19.1; with 130 Females, 408 Males,
and 22 who did not identify as either. The same criteria were applied
as the ෽irst experiment; four participants were removed from the anal‐
ysis as well as 1.85% of the data.

Method

The display of the stimuli was modi෽ied so that baboons could use the
touchscreen to click on the initial target without hiding any part of the
screen used for distractors afterward, whence the semicircle seen in
Figure 5.11. In order for them to understand the task, a long training
procedure was devised: ෽irst, they had to lean the match‐to‐sample
task, using perceptually simple stimuli. First, they had to learn the
taskwith choosing display feature thematch and two distractors, then
three, then four, and ෽inally ෽ive for a total of 6 items on display. Then,
we trained them to ignore scaling differences bymaking the target big‐
ger and bigger, until it reached a scaling factor of 2 which matches the
experimental condition in humans. Each baboonwouldmove on to the
next step whenever the average performance on the last block of 108
trials at a given step was better than 80% success. This was done in
a ෽irst version of the task that tried to replicate the self‐pace strategy:
a trial started with an empty yellow circle, which was replaced with
the target upon being touched. The target disappeared when touched
again, and immediately after the distractor appeared.
Another minor difference is that the choice of possible distractors was
slightly modi෽ied for the baboons’ experiments, and correspondingly
for the fast version of the human experiment: instead of two distrac‐
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tors close for the IT measure, two distractors close for the gray‐level
measure, and one chosen randomly uniformly in the remaining shapes,
there were only one IT and one gray‐level distractors, and the three
others were chosen randomly. We decided to do this to make the task
slightly simpler, as harder tasks may discourage baboons from partic‐
ipating at all.

This data was analyzed, and it became clear that the baboons did not
use the ability offered by the self‐pacing, making the experiment very
different: there was no signi෽icant effect of the target shape on the en‐
coding time (testedwith anANOVA, F67,737=1.07, p=.33) and itsmedian
value was 108ms, much lower than even the minimum in adults. This
con෽irmed the observed behavior that the baboons seemed to make
very quick double‐tap on the screen to start the screen and get to the
distractors as fast as possible, a strategy which ෽lashed the target long
enough for them to perform correctly on the training stimuli and max‐
imize their expected reward through the sheer number of trials per
minute they could perform. But if indeed some shapes take longer
to encode than others, such a behavior destroys the complexity of the
MDL on the behavior.

This ෽irst data was collected from September 8th, 2021 to September
27th, 2021, and subsequently analyzed. When this discrepancy with
the human adults was discovered, we decided to run an additional
experiment where the looking time was constrained, to give enough
time for the shapes to be encoded. To further replicate the human
experiment, the delay between the target and the choice screen was
also reintroduced. This led to an additional 12 training steps that take
place before the ෽irst training step of the previous design: starting
with 1‐in‐3 choice screen and 100ms presentation time / no delay, we
slowly built up the presentation time duration (200ms, 300ms, 500ms,
700ms, 1000ms) and the delay (0ms, 100ms, 200ms, 300ms, 500ms,
700ms, 1000ms). Once both had reached 1000ms, we resumed the
previous training procedure with these delays: adding back more
distractors, then changing the scale, generalizing, and ෽inally testing
on the geometric shapes. This second experiment spanned from
March 22nd, 2022 to April 09th, 2022.

Between these two experiments, we replicated the fast version of the
experiment in adults, with a ෽ixed presentation time of 100ms and no
delay between presentation and choice. Additionally, we reused the
semicircle display used in the baboons instead of the 3x2 grid, and we
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had participants took the training steps in order: any success would
move them to the next step, to avoid participants staying too long on
the training as the experiment was conducted online.

Results
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Figure 5.12: A. r coefficient associated with the correlation of the response time across shapes for (i) each
baboon in the slow condition, (ii) each baboon in the fast condition, (iii) nine groups of humans (groups of equal
size, randomly attributed) in the slow condition and (iv) twelve groups of humans (idem) in the fast condition.
Values indicate average r within the “big cell”, after removing correlation between the same individual baboon
across conditions as they were very close to 1. B. distribution of the r coefficient in each “big cell” of thematrix
in A; to visualize how distribution compare across species and conditions. C. Plot similar to Figure 5.7.B with
(i) the estimates and standard error instead of the t‐values, (ii) absolute value to visualize explained variance
more straightforwardly, and (iii) a subplot for each population and condition.

After training, nine baboons in the slow condition and twelve baboons
in the fast condition performed trials with the geometric shapes de‐
scribed in experiment 1.
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First, we report the correlation of the response times across shapes
for each baboon in each condition, and for random groups of humans.
Individual participants having had a single trial per shape, and being
more numerous than the baboons, we decided to randomly form as
many groups of participants as there are individual baboons in a con‐
dition, to approximate stability in the population by averaging within
group, and then measure the correlation across groups, treating hu‐
man groups as we would individual baboons. The full correlation ma‐
trix is displayed in Figure 5.12.A, and distribution of r‐coef෽icients
within “big cells” are reported in Figure 5.12.B, where “big” cells re‐
fer to a population‐condition pair.

First off, we notice that correlations are higher forwithin‐species pairs
than across species, irrelevant of the task, as made clear by the two
triangles on the bottom left and top right in Figure 5.12.A, and the
෽irst two triplets of density estimates in Figure 5.12.B. Interestingly,
within humans the correlation is higher for within condition (fast or
slow) pairs than for the across condition pair, and that difference is
signi෽icant (two t‐test, both p<.001), however, in baboons neither is
signi෽icant (p=.24 for one pair and p=.08 for the other, removing from
the distributions the “same individual” data points).

While the correlations between humans and baboons are much lower
than the within population correlations, another effect is visible: the
fast, under‐pressure humans are more correlated with the baboons
(both conditions) than the self‐paced humans. This is true whether
we correlate fast humans with the slow baboons or the fast baboons.

Finally, we used the same model as for experiment 1 and ran a mixed‐
effect glm predicting the response time with many regressors to see
whether the effect of the MDL stands out in both human conditions
and in both baboons conditions: the coef෽icients after scaling both the
dependent variable and all predictors are presented in Figure 5.12.C,
sorted according to the absolute value of the predictor for the data al‐
ready provided with experiment 1. We can see the predictors are all
reduced and that the distribution changes a bit in the humans between
the two conditions, but the gray level is still the dominant predictor
and the MDL is still a signi෽icant predictor.

The coef෽icients of the baboons’ data look very different from the hu‐
mans, for both conditions. In the slow condition, the MDL is also sig‐
ni෽icant in baboons, after the number of angles and the number of dis‐
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connected parts, and above the number of extremities. In the fast con‐
dition, the effect of MDL collapses, while the effect of closure becomes
signi෽icant, as does the spatial frequency. Note that the standard er‐
ror bars aremuch bigger for baboons than for humans becausewe use
mixedmodels and have manymore human participants than baboons.

5.6.2 Discussion and Future Work

These analyses are still preliminary, but they already point toward a
number of interesting directions. First, the effect of population domi‐
nates the effect of conditions: humans behave like humans no matter
the condition, and likewise for baboons. And yet, humans in the fast
conditions are signi෽icantly closer to baboons than humans in the slow
condition: this is predicted by the theory under the assumption that
the ෽lashed shape cannot be encoded – or at least, that some shapes
cannot be encoded in such a short period, forcing participants to rely
on more super෽icial visual properties.
Analysis of the coef෽icients in the mixed effect model indicate that the
data the fast condition, when compared to the slow condition, is over‐
all noisier in humans as almost all predictors take a toll, but overall
very comparable and yielding comparable kind of behavior. Indeed,
while the general ordering changes a bit to give more importance to
the spatial frequency and the number of parts, the MDL still signi෽i‐
cantly impacts the behavior, and the overall distribution of predictors
resembles that of the slow condition.
In baboons, the data in the fast condition has a very different look from
the human pattern, with almost dissociated set of important predic‐
tors: the gray level, MDL and number of 4+ way intersections, which
dominate in the human data, are not signi෽icant in baboons, and con‐
versely the number of parts, spatial frequency, and number of extrem‐
ities dominates in baboons and are mostly weakest in humans. How‐
ever, the general pattern of predictors changes quite a lot in the slow
condition, indicating that changing condition does indeed have an ef‐
fect on the behavior beyondmaking participantsmore or less prone to
mistakes.
Ultimately, these results show the limit of the current analyses. Unfor‐
tunately, it is meaningless to analyze error rates in humans as the per‐
formance are almost always perfect, and at the same time the response
time in baboons is often disfavored and replaced with error rates be‐
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cause subjects tend to respond as fast as possible, quenching the vari‐
ability in response time. This suggests moving to a speed‐accuracy
trade‐off metric such as IES, RCS, LISAS or BIS (Liesefeld & Janczyk,
2019), however, many of these metrics require intra‐individual esti‐
mation of the variance of the accuracy and response time, andwe can’t
estimate this information in our human participants.
In addition to this, current models of the behavior only consider the
target shape’s properties: given the importance of the choice of dis‐
tractors highlighted previously, it is crucial for a more accurate model
of the behavior to take into account the distractors aswell. Onepromis‐
ing avenue for this is to use twomodels as done in chapter 1 and chap‐
ter 2, a symbolic one and a perceptual one. The symbolic model could
be a distancemetric over the space of programs, perhaps theHamming
distance (which measures the number of additions, deletions and mu‐
tations required to go from one program to another). For the percep‐
tual model, we can compute the confusion matrix across all shapes us‐
ing a neural network of object recognition, to get a notion of percep‐
tual similarity. These models, then, predict how dif෽icult a given trial
should be as a function of the list of distractors present, and we can
separately account for response time variability in humans, and error
rate variability in baboons.
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Summary

Natural language is not the only hallmark of humans’ singular cogni‐
tive abilities. In thework presented here, and in linewith the language
of thought literature, I argue that there could exist several internal
“languages of thought”, and that geometric shapes could be a pivotal
way to study non‐linguistic, high‐level structured cognitive processes.
To do so, I show that cognition involving geometric shapes requires a
set of discrete, symbolic mental representations that act as an internal
mental languagewith compositional properties, and provide evidence
that non‐human primates cannot access these representations. Under
that view, perceiving a shape is comparable to the process of program
induction: ෽inding the shape’s shortest representation in the internal
mental language.
First, leveraging an intruder task with quadrilateral shapes, I show
that humans of diverse education, age and culture share a sense of geo‐
metric complexity wherein some shapes are consistently simpler than
others. I replicate the ෽inding using several different paradigms and
the same stimuli, including introspective reports of geometric com‐
plexity. However, baboons lack this sense even after adequate exten‐
sive training to the task.
Arti෽icial neural networks of object recognition ෽it all baboons’ data
well, but explaining humans’ behavior requires enriching the neural
network with additional symbolic properties such as the presence of
right angles – and in fact, in educated adults the symbolic model is
enough. I show that the symbolicmodel also generalizes to other tasks,
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and that data‐driven methods for characterizing the behavior in hu‐
mans yield dominant accounts that alignwell with the symbolicmodel.

This sharp dissociation suggests that two strategies are available to
encode geometric shapes: both humans and non‐human primates
share a perceptual strategy, well captured by models of the ventral
visual pathway, but only human have access to an exact, symbolic
strategy. Using magnetoencephalography (MEG) during a passive
shape perception task, I identify strong neural correlates of both
strategies, well separated in location and temporal unfolding: I
shed light on an early occipital response that resembles the neural
network models, followed by a slower, more dorso‐frontal response
similar to the symbolic model. At the same time, using electroen‐
cephalography, I provide preliminary evidence for the existence of
the symbolic strategy already in three‐month‐old infants. In fMRI,
I ෽ind that passive geometric shape perception, when compared to
the passive visual perception of other shapes such as faces, objects
or letters, over‐activates areas previously argued to belong to a vast,
non‐linguistic network for mathematical reasoning. I also localize
more precisely areas speci෽ically linked to the two models, and ෽ind
interesting overlap between the two which may indicate where the
visual information is integrated into the higher‐level, symbolic mental
representation.

Finally, I show that if a symbolic strategy exists redundantly with a
lower‐level strategy which is rich enough to perform a given task, hu‐
mans may not always use the symbolic strategy at all. This is compati‐
ble with the argument made from previous experiments that the sym‐
bolic strategy is not pre‐attentive, and importantly this suggests ways
of preventing participants fromdeploying symbolic strategies, thereby
pushing them toward a non‐human private behavior. Conversely, this
could provide new ways to test non‐human primates, allowing for a
෽iner‐grained characterization of the differences between human and
non‐human primates.

Going beyond a small set of highly controlled quadrilaterals, I set
to try to account for all geometric shapes produced by humans: I
make a concrete proposition for a generative mental language of
geometric shapes inspired by attested human geometric productions.
I argue that in humans, perceiving a shape means ෽inding the short‐
est program in this language that generates the shape, connecting
shape perception in humans to the literature on program induction.
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Equipped with this language, I show that program induction is in
principle a tractable problem for this domain using the DreamCoder
algorithm I helped implement. Then, I use this language to enumerate
shapes of increasingly high complexity, and show that humans’
performance in a match‐to‐sample task for a shape correlate with the
length of its shortest program. To decouple this result from the exact
language proposition, I also derive more general additive rules that
any alternative languages must obey; then with new experiments, I
provide strong empirical evidence for the existence of these laws as
models of human behavior.
Taken all together, these results support the existence of a discrete,
symbolic set of mental representations for geometric shapes, which
coexists with bottom‐up visual representations. This work paves the
way for integrated neuro‐symbolic models of shape perception while
challenging currently dominant object‐recognition basedmodels of vi‐
sual perception.

Future Work

The work presented here is, unsurprisingly, far from settling all the
questions it sets out to consider. In particular, there are several
research directions that I want to emphasize as being good candi‐
dates for future work, and list them below. They correspond to the
main properties of the phenomenon I describe: its universality (in
humans, and in particular in babies), its uniqueness (as compared
to other species), its cognitive plausibility (symbolic approaches
must somehow be implemented in real networks of real neurons)
and its emergence (both at the evolutionary timescale, and at the
developmental timescale).

Extensive Comparison with Non‐Human Primates

In order to make a strong argument of the human singularity of a lan‐
guage of thought for geometric shapes, the comparison with a single
species is not enough: after all, the baboons could be singular in not
sharing this ability with other primates.
While I don’t think this alternative theory will eventually prove cor‐
rect, gathering data from more non‐human primates, and in particu‐
lar great apes, would be very informative. During my PhD we started
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a collaboration with the “Ape Cognition and Conservation Initiative”
(ACCI, “dedicated to the science, conservation and protection of Great
Apes worldwide”). There, in collaboration with Jared Taglialatela and
Amanda Epping, we started a training procedure similar to the one
performedwith baboons on the quadrilateral intruder test with seven
bonobos. Unfortunately, for a variety of methodological and adminis‐
trative reasons, the training procedure was slowed down immensely,
forcing us to adapt the training steps on the ෽ly and focus on a subset
of the available subjects, namely Nyota, Teco, and the infamous Kanzi.

While these three subjects eventually reached acceptable performance
on the training trials, it took a very long time, and went over the time
and ෽inancial budget we could allocate for this work. The trials we col‐
lected for themain geometric task are inconclusive about the research
questions, as subjectswere still at chance across all possible geometric
shapes, but it allows us to at least conclude about a failure to general‐
ize straightforwardly from the training procedure in three individuals,
in stark contrast with what even ෽ive‐years‐old children appear to do
effortlessly.

Without additional data, further scienti෽ic claims about bonobos are
unwarranted. But the duration of the training and the lack of gener‐
alization are interesting observations alone – in particular in the case
of Kanzi who is said to have learned to use over 200 lexigrams (not
mentioning the combinatorial explosion), most of which are colorful
geometric shapes, to communicate (Green෽ield & Savage‐Rumbaugh,
1990).

Going beyond behavioral data, intracranial data from primates could
make comparing the neural dynamic of geometric shape perception
in humans even more straightforward, thanks to the MEG and fMRI
data acquired already. Using passive presentation paradigms and high‐
resolution recording arrays over several brain areas, as is already done
e.g. in occipital areas (Ponce et al., 2019) or in the prefrontal cortex
(Bellet et al., 2021; Xie et al., 2022), would be particularly impactful.

Indeed, such neuronal data would unlock several possibilities to test
hypotheses. First, it could be used to test whether the early, neural
network‐like response observed in humans in chapter2 already exists
in non‐human primates – this is likely, given that the exceptional pre‐
dictiveness of the neural network model on the behavioral data. But
it could also help adjudicate between different hypotheses of why ba‐
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boons’ behavior doesn’t correlate at all with the symbolic model: if we
෽ind that there is a late, frontal response that resembles the symbolic
model in non‐human primates, then this will strongly suggest that the
absence of “geometric complexity effect” in chapter 1 is a byproduct
of the design of the task itself rather than a limitation in the cognitive
abilities of baboons. If, however, no brain area at all seems to corre‐
spond to the symbolic model a hypothesis supported by our data but
also by recent experiments using geometrical sequences (H. Zhang et
al., 2022), this will strongly strengthen the argument I present in the
present work.

Neural Networks, Neurosymbolic Models, and Program In‐
duction

In computer science and AI, attempts at solving the problem of Pro‐
gram Induction has historically been dominated by symbolic strate‐
gies, recently improved with neurosymbolic models. One reason for
this is the inherent roughness of the space of programs (for any ex‐
pressive enough programming language, one can ෽ind two programs
that are arbitrarily close in “source space”, or in the space of the lan‐
guage, with arbitrarily different outputs1).
In an interesting turn of events, it appears that neural networks
trained for natural language processing on gigantic web‐scrapped
corpora end up learning a fair amount of programming in different
languages. For example, GPT‐3 (Brown et al., 2020), when prompted
with text formatted using LaTeX’s syntax, well produce continuations
that are often syntactically valid LaTeX markup. For common enough
problems, prompting the model with the beginning of a python
solution can make it produce a valid continuation.
Neither of these uses were explicit goal of the training procedure, but
this realization prompted the creation of Codex (Chen et al., 2021),
which powers the current version of GitHub’s “copilot” AI for code sug‐
gestion. Its use range over all sorts of tasks, such as (i) writing a func‐
tion given a short comment describing it, (ii) explaining a regular ex‐
pression in a comment just above, or (iii) writing a syntactically valid
LaTeX equation for a mathematical computation in code; and it does
so it does so across seven programming so far.

1I want to thanks Steven Piantadosi for pointing this apparently unpublished re‐
sult to me
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And while natural language is bound by existing productions (Hoff‐
mann et al., 2022) as there are no oracles for what constitutes valid
utterances in a given language, this does not hold true for computer
languages. In DreamCoder (Ellis et al., 2021), a neurosymbolic model,
we leverage this property to generate training data from scratch.
Recent work has taken a purely‐non‐symbolic approach to this prob‐
lem (Haluptzok et al., 2022) in a more ambitious way: they generate
“programming puzzles” randomly, and train a large language model
to solve them, thereby breaking free of the existing training data in
tackling the program induction in a purely “large language model”
way.

This strategy might soon provide us with remarkably good tools for
solving program induction problems. But unlike natural languages,
there is no debate that program induction is a symbolic problem at its
core. Therefore, we might have very interesting models to study how
a purely symbolic problem can be solved in a purely neural‐network
model – whether this will be informative about the cognition remains
to be seen.

Cognitive Plausibility and Implementation of Program Induc‐
tion

The other side of the coin is that “language(s) of thought” must be im‐
plemented in the brain: a real network of real neurons. What cortical
and subcortical mechanisms could implement symbolic manipulation
and program induction?

One interesting avenue, which I intended to explore during my
postdoc, is that hippocampal replay, a mechanism by which the brain
rapidly reactivates in ways that are reminiscent of a stimulus (Diba
& Buzsáki, 2007; Foster & Wilson, 2006), might be repurposed to
implement program induction. It is now possible to detect replay of a
given stimulus in humans with MEG data by using decoders trained
on the reference activations for the stimulus, and tested during
resting or deliberating states. Recently, it has been hypothesized that
generative replay plays a role in hypothesis testing or model building
(Schwartenbeck, 2021). As such, generative replay is an explicit
neurobiological proposition of how a mechanism such as program
induction might be implemented in the brain, and it could prove a
pivotal bridge between the theoretical cognitive proposals and the
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neurobiological mechanisms underpinning mental representations.
At the same time, the mechanism of replay is far from being unique to
humans. Studying the link between replay and the act of building ab‐
stract representations is therefore useful in two ways: it offers a con‐
crete challenge to the program induction theory, and suggests line of
research to explore the limits of what might make humans appear sin‐
gular in the animal kingdom from a cognitive standpoint.

Evolution, at Different Timescales, of the Language of
Thought Hypothesis

There are two timescales at which the emergence and progression of
the Language(s) of Thought are particularly critical for a better under‐
standing of its roots: the individual developmental, and the evolution‐
ary timescale.
Throughoutmywork I insist on theuniversality of the existenceof sym‐
bols in human cognition, at least in the case of geometric shapes. But
evidence provided as early as in chapter 1 indicates that, unsurpris‐
ingly, there are differences between adults and children. I have not
tried to model those differences explicitly yet, but already this obser‐
vation prompts several questions.
In particular, it would be interesting to try to understand whether the
effect of education is to develop the symbolic strategy itself, or to train
explicitly to overemphasize one strategy against the other. Previous
work in approximate number system and math abilities (Elliott et
al., 2018; Nys et al., 2013; Piazza et al., 2013), showing that explicit
training in mathematics appears to positively impact the approximate
number system, suggests that explicit teaching in geometry could
similarly impact the non‐symbolic strategy. Additionally, given the
fMRI evidence proposed in chapter 3 and the apparent proximity
between geometric shape perception and mathematics, but not
language, another immediate question is whether reading scores,
language score and math scores would correlate with performance in
our intruder task.
And what about the evolutionary timescale? Under the current frame‐
work it seems thatwhen compared to other primates, evolutionwould
affect multiple, broad and bilateral areas, encompassing at least the
inferior and middle prefrontal cortex, as well as the associative pari‐
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etal and temporal areas (Eichert et al., 2020; Hill et al., 2010; Mars
et al., 2018). What could underscore speci෽ically the language(s) of
thought? One exciting possibility is that amutationmade composition‐
ality available independently to many brain areas, perhaps by chang‐
ing low‐level properties of the neural substrate, either the cells, or the
laminal cortical organization, or other. Under that hypothesis, a single
set of mutation could have led to the emergence of new abilities in var‐
ious areas, which would then end up specializing to different domains
according to their preexisting functional connectivity to the cortex.

Closing Words

If a mathematician of the past, an Archimedes or even a
Descartes, could view the ෽ield of geometry in its present
condition, the ෽irst feature to impress him would be its lack
of concreteness. There are whole classes of geometric
theories which proceed […] without the slightest (apparent)
use of the spatial intuition.

Edward Kasner in “The present problems of geometry”
(Kasner, 1905)

The quest for understanding the natural of abstract representations
through an examination of the geometric abilities of humans, which
started more than two thousand years ago with Plato, is unsurpris‐
ingly far from over. That quest has featured many great names from
both cognitive psychology, cognitive neuroscience, computer science
and mathematics.
Much like mathematicians of the past would be surprised by what ge‐
ometry looked like in 1905 (years before Grothendieck was even born
– what would Kasner think about that revolution), I hope cognitive sci‐
ence about geometry and abstraction will keep on surprising and en‐
lightening us. It seems that now things are moving faster and faster:
arti෽icial neural networks achieve superhuman performance in some
vision‐related tasks and in some natural language processing tasks,
neuroimaging techniques make it possible to ෽ind an algebraic encod‐
ing of the unfolding of a geometrical sequence over time in primates’
brains, and testing thousands of humans on a single task has never
been easier – what an exciting time it is to work in this environment!
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Li, M., & Vitányi, P. (1997). An introduction to Kolmogorov complexity and its applica‐
tions. Springer Heidelberg. http://cs.ioc.ee/yik/lib/7/Li1.html

Liesefeld, H. R., & Janczyk, M. (2019). Combining speed and accuracy to control
for speed‐accuracy trade‐offs(?). Behavior Research Methods, 51(1), 40–60.
https://doi.org/10.3758/s13428‐018‐1076‐x

Long, B., Fan, J., Chai, Z., & Frank, M. C. (2019). Developmental changes in the
ability to draw distinctive features of object categories [Preprint]. PsyArXiv.
https://doi.org/10.31234/osf.io/8rzku

Lowet, A. S., Firestone, C., & Scholl, B. J. (2018). Seeing structure: Shape skeletons
modulate perceived similarity. Attention, Perception, & Psychophysics, 80(5), 1278–
1289. https://doi.org/10.3758/s13414‐017‐1457‐8

Mach, E. (1914). The analysis of sensations, and the relation of the physical to the
psychical. Open Court Publishing Company.

Mair, P., Groenen, P. J. F., & de Leeuw, J. (2022). More on Multidimensional Scal‐
ing and Unfolding in R: Smacof Version 2. Journal of Statistical Software, 102(10).
https://doi.org/10.18637/jss.v102.i10

Malassis, R., Dehaene, S., & Fagot, J. (2020). Baboons (Papio papio) Process a
Context‐Free but Not a Context‐Sensitive Grammar. Scientiϔic Reports, 10(1), 7381.

234



References

https://doi.org/10.1038/s41598‐020‐64244‐5

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of
EEG‐ and MEG‐data. Journal of Neuroscience Methods, 164(1), 177–190.
https://doi.org/10.1016/j.jneumeth.2007.03.024

Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial or‐
ganization of three‐dimensional shapes. Proceedings of the Royal Society of London.
Series B. Biological Sciences, 200(1140), 269–294.

Mars, R. B., Sotiropoulos, S. N., Passingham, R. E., Sallet, J., Verhagen, L., Khrapitchev,
A. A., Sibson, N., & Jbabdi, S. (2018). Whole brain comparative anatomy using con‐
nectivity blueprints. ELife, 7, e35237. https://doi.org/10.7554/eLife.35237

Maruyama, M., Pallier, C., Jobert, A., Sigman, M., & Dehaene, S. (2012). The corti‐
cal representation of simple mathematical expressions. NeuroImage, 61(4), 1444–
1460. https://doi.org/10.1016/j.neuroimage.2012.04.020

Mathy, F., & Feldman, J. (2012). What’s magic about magic numbers? Chunking
and data compression in short‐term memory. Cognition, 122(3), 346–362.
https://doi.org/10.1016/j.cognition.2011.11.003

Matsuzawa, T. (1985). Use of numbers by a chimpanzee. Nature, 315(6014), 57–59.

McBride, T., Arnold, S. E., & Gur, R. C. (1999). A Comparative Volumetric Analysis of
the Prefrontal Cortex in Human and Baboon MRI. Brain, Behavior and Evolution,
54(3), 159–166. https://doi.org/10.1159/000006620

McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M. B. (2006). Path
integration and theneural basis of the “cognitivemap.” NatRevNeurosci, 7(8), 663–
678. https://doi.org/10.1038/nrn1932
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Long Summary (English)

Ainsi certes, nous ne pourrions jamais connaı̂tre le triangle
géométrique par celui que nous voyons tracé sur le papier, si
notre esprit d’ailleurs n’en avait eu l’idée

Descartes, Cinq Rép., AT VII, 382 ; OC IV‐1, 574.

What is a point? Euclid famously kickstarted geometry as we know
it today with his de෽inition n°1, “A point is that which has no part”
(“Σημειον εστιν, ου μερος ουθεν” (Byrne & Euclid, 1847)). There is
no physical entity to which this de෽inition would apply; a point must
therefore exist only in the mind of the beholder. What mental and neu‐
ralmechanismsmake it possible to entertain such concepts? Are those
mechanisms only available to humans, and are they deeply tied to nat‐
ural language? In my PhD work, I propose that even the simplest ge‐
ometric concepts are uniquely human, and that they lie at the founda‐
tion of a rich generative system of shapes that behaves like an internal
mental language. I argue that humans across ages, cultures and ed‐
ucation levels share this sense of geometry, and I explore its neural
mechanisms.
Inmy thesis I explore the possibility that all humans, and humans only,
mentally represent shapes asmuchmore than their visual impressions
by superimposing structure onto their perception. More speci෽ically, I
argue that humans possess the ability to represent geometric shapes
using an internal language specialized for that purpose. I provide evi‐
dence that they naturally deploy this mechanismwhen facedwith geo‐
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metric shapes, in addition to other mechanisms of perception. I show
that this is true independently from education, culture and age by test‐
ing diverse populations on the same task. As a contrasting point, I pro‐
vide evidence that baboons either do not possess this competence, or
do not deploy it even when it would be extremely useful. I model the
difference between humans and non‐human primates with two very
contrasting classes of models.
I then ෽ind neural evidence in favor of cognitive processes related
to these two models, using both MEG and fMRI in human adults,
6‐year‐old children, and to a limited extent, 3‐month‐old infants.
Finally, building on computer science and AI together with cognitive
psychology, I make a concrete proposal for a candidate mental lan‐
guage for geometric shapes. I test its behavioral validity, show that
a neurosymbolic model can implement a theory of shape perception
as program induction, and independently verify that some pivotal
hypotheses underlying the language I propose must hold true of other
propositions as well.
Below, I will provide a very brief overview of the production of geo‐
metric shapes across history and culture, together with a review of
the experimental cognitive science literature regarding geometry in
humans. Then I will introduce the Language of Thought Hypothesis
(LOTH), with an emphasis on programs as candidates for mental rep‐
resentations. I will connect the LOTH to cognitive science research
performed using information theory. Finally, will outline and brie෽ly
summarize the structure of the work reported inmy thesis, chapter by
chapter.

Evidence of Geometrical Productions in Humans

Paleontological Evidence

Evidence for abstract concepts of geometry, including rectilinear‐
ity, parallelism, perpendicularity and symmetries, is widespread
throughout prehistory. About 70,000 years ago, Homo Sapiens at
Blombos cave carved a piece of ocher with three interlocking sets of
parallel lines forming equilateral triangles, diamonds and hexagons
(Henshilwood et al., 2002). Much earlier, approximately 540,000
years ago, homo Erectus in Java carved a zig‐zag pattern on a shell
(J. C. A. Joordens et al., 2015). Such a zig‐zag may look simple, but it
approximately respects geometric constraints of equal lengths, equal

246



Appendix

Figure 13: Geometric shapes in human cultural history. A, examples of small‐ and large‐scale geometric
drawings and constructions (From left to right and top to bottom: an engraved slab from Blombos caves dating
about 70.000 years ago (Henshilwood et al., 2002); zigzag pattern engraved on a shell in Java approximately
540.000 years ago (J. C. A. Joordens et al., 2015); Boscawen‐Ûn’s Bronze Age elliptical cromlech in Cornwall;
spiral stone engraving on Signal Hill in SaguaroNational Park, Arizona, dated 550 to 1550 years ago; geometrical
shapes below the painting of a Megaloceros in Lascaux, France, typically dated to be 17,000 years old)

angles and parallelism, and is undoubtedly attributed to the homo
genus.

Even earlier, about ~1.8 million years ago, ancient humans have been
carving spheroids (sphere‐like stones) and bifaces — stones possess‐
ing two orthogonal planes of symmetry (Le Tensorer, 2006). The vast
number of bifaces, their near‐perfect symmetry (which is not required
for them to operate as ef෽icient tools (Le Tensorer, 2006)), and the
archeological evidence that many were never used as tools, suggest
that an aesthetic drive for symmetry was already present in ancient
humans.

Anthropological and Cross‐Cultural Evidence

Contemporary cognitive anthropology corroborates those ෽indings.
Cognitive tests performed in relatively isolated human groups such
as the Mundurucu from the Amazon, the Himba from Namibia, or
indigenous groups from Northern Australia, show that in the absence
of formal western education in mathematics, adults and even children
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already possess strong intuitions of numerical and geometric concepts
(Amalric et al., 2017; Butterworth et al., 2008; Dehaene et al., 2006;
Izard et al., 2011; Pica et al., 2004; Sablé‐Meyer, Fagot, et al., 2021).

Indeed, adults without formal western education share with Western
preschoolers a large repertoire of abstract geometric concepts (De‐
haene et al., 2006) and use them to capture the regularities in spatial
sequences (Amalric et al., 2017) and quadrilateral shapes such as
squares or parallelograms (Sablé‐Meyer, Fagot, et al., 2021). They also
possess sophisticated intuitions of how parallel lines behave under
planar and spherical geometry, such as the unicity of a parallel line
passing through a given point on the plane (Izard et al., 2011).

Developmental Evidence

Another piece of evidence arises from developmental data. Preschool‐
ers and even infants have been shown to possess sophisticated
intuitions of space (Hermer & Spelke, 1994; Landau et al., 1981;
Newcombe et al., 2005), spatial sequences (Amalric et al., 2017),
and mirror symmetry (Bornstein et al., 1978). Indeed, preschoolers’
drawings already show a tendency to represent abstract properties
of objects rather than the object itself. Although they look primitive,
drawings of a house as a triangle on top of a square, or a person as
a stick ෽igure with a round head, suggest a remarkable capacity for
abstracting away from the actual shape and attending to its principal
axes, at the expense of realism. Numerous tests leverage this geomet‐
ric competence to assess a child’s cognitive development by counting
the number of correct or incorrect abstract properties, for instance
when asked to draw a person (Goodenough, 1926; Harris, 1963; Long
et al., 2019; Prewett et al., 1988; Reynolds & Hickman, 2004). There
is some evidence, however limited, that this ability may be speci෽ically
human: when given pencils or a tablet computer, other non‐human
primates do not draw any abstract shapes or recognizable ෽igures, but
mostly generate shapeless scribbles (Saito et al., 2014; Tanaka et al.,
2003).
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Programs as Candidates for Mental Representations: A Take
on the Language of Thought Hypothesis

“Humans have a multi‐domain capacity and proclivity to infer
tree structures from strings, to a degree that is dif෽icult or
impossible for most non‐human animal species”

W. Tecumseh Fitch (2014)

Geometric Primitives of Cognition

In cognitive science, the ෽irst application of information theory to
visual perception comes from work by Attneave (1954). He observed
that a given a visual perception is redundant, in the sense that many
portions could be hidden and yet successfully inferred or recovered
by a human observer. From this, he argues that the mental represen‐
tation of a visual percept might leverage this redundancy to compress
the visual information. For geometric shapes speci෽ically, the earliest
theory of programs representing geometric shapes comes from
Leeuwenberg and colleagues(E. L. Leeuwenberg, 1969, 1971; Boselie
& Leeuwenberg, 1986), who proposed a formal coding language for 2‐
and 3‐dimensional shapes. They argue that themental representation
of a shape is as complex as the smallest program in that language, a
property I also defend in chapter 5. In fact, they already observe that
some elements of their proposed language are quite general, and that
they could be applied to the compression of auditory sequences as
well, a property that was found again in recent work on geometric
sequences in the visual and auditory domain (Amalric et al., 2017;
Planton et al., 2021). In addition to the theoretical claims, they
provide some empirical support for their proposition, but conclude in
saying, “[…] for the time being [the proposed coding procedure] will
hardly lend itself to computer programming”, but nowadays this does
not hold true anymore, and I tackle this in chapter 5. I compare this
other approaches, including from Leyton (Leyton, 1984, 2003), in the
thesis.

Kolmogorov Complexity & MDL

A long‐standing cognitive hypothesis is that the brain excels at com‐
pressing information. Indeed, in the presence of structure in stimuli,
either visual, auditory or other, participants’ score improves in a wide
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variety of tasks. The ෽irst observation of this phenomenon comes from
(Miller, 1956), who states: “I have fallen into the custom of distinguish‐
ing between bits of information and chunks of information. […] The
span of immediate memory seems to be almost independent of the
number of bits per chunk, at least over the range that has been ex‐
amined to date.” Immediate examples include remembering words,
where the main factor is the number of words and not the number of
letters, but similar observations are pervasive in psychology.

A strong version of this hypothesis states that the brain ෽inds struc‐
ture in a richer way than chunking, and relies on generative (program‐
ming) languages: the complexity of a given piece of information is the
length of the shortest program that generates that information (Good‐
man et al., 2012; Tenenbaum et al., 2011). This hypothesis connects to
the predictive coding hypothesis, as the ability to predict and generate
can be deeply tied to the generative languages. Furthermore, for prob‐
abilistic programing languages, generative language theories have the
ability to account for both success and mistakes in human behavior: a
crucial feature of a good candidate theory of cognition. What’s more,
such theories can entertain the coexistence of several possible mental
representation with different probabilities, and therefore account for
ambiguous representations.

A lot hinges on the choice of the programming language, as various
propositions might make wildly different predictions. Because of this,
it’s unclear that one can ෽ind aunifyingproposition that can account for
very different stimuli (auditory, visual, intuitive physics, etc.). Thank‐
fully, an entire research domain studies a related problem: the ෽ield
of information theory. The ෽ield studies theoretical questions such as
“what is themost information‐ef෽icientway to represent a given set and
its elements”. In the introduction of my thesis I describe two related
notion from that ෽ield and showhow they relate: KolmogorovComplex‐
ity, and Minimum Description Length (MDL). I discuss how in෽luential
and useful they can be when specifying cognitive theories.

Cognition and Program Induction

If mental representations have program‐like properties, then it is cru‐
cial to offer a theory of how the programs are inferred: how do we go
from the sensory inputs to the structured representation? What are
good models of “mental program building”?
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In computer science, the sub෽ield tackles this question is that of “Pro‐
gram Induction”: the problem of program induction is the problem
of ෽inding a program given, typically, a set of input‐output example
pairs. An immediate observation is that this is in principle an impossi‐
ble problem: there are arbitrarily many programs that may work, but
some will behave differently on new input – in the absence of which
the notion of “correct program” cannot be decided. But given enough
examples, the trivial program that encodes explicitly the input/output
pairs becomes very costly, and the length of the program can be used
as a selection strategy: I claim that humans search, and ෽ind, the short‐
est program when they understand a geometric shape, and therefore
the complexity of a shape will be predicted by its MDL.

A baseline for solving program induction is program enumeration:
recursively enumerate all possible programs in a programming lan‐
guage’s grammar until you hit a program that satis෽ies the constraints.
But this procedure is a poor candidate for a cognitive implementation
of program induction under the MDL hypothesis: if we consider
that the complexity of a certain program is a function of its MDL,
then under that approach the complexity of ϔinding that program
would grow exponentially with its MDL. However, several methods
have been devised to try and keep this combinatorial explosion in
check, I describe them in the introduction of the thesis and I rely on
DreamCoder (Ellis et al., 2021), which I helped implement, in chapter
5.

Structure of the chapters

In chapter 1, I show that even the detection of an intruder among
quadrilaterals distinguishes humans from non‐human primates. Us‐
ing an intruder task with quadrilateral shapes of different regularity,
from highly regular squares to irregular quadrilaterals, I show that hu‐
mans of diverse education, age and culture share a sense of geomet‐
ric complexity: some shapes systematically elicit better performance
thanothers. For example,when looking for an intruder among squares,
participants are fast and accurate, but when looking for an intruder
among identical irregular shapes, participants are slowand inaccurate.
I show that this is also true with different paradigms such as visual
search or introspective rating, making the case for a strong, easy to
replicate effect.
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Chapter 1: Sensitivity to geometric shape regularity in humans and baboons: A putative signature of human singularity

Chapter 2: M/EEG evidence for symbolic and non-symbolic neural mechanisms of geometric shape perception in adults and infants

Chapter 3: Geometric Shape Perception Activates Brain Regions Associated with Mathematical Cognition, an fMRI study

Chapter 4: Categorical perception of right angles in humans and baboons

Chapter 5: A Language of Thought for the Mental Representation of Geometric Shapes
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On the other hand, baboons lack this sense even after adequate
extensive training: over a sequence of increasingly hard tasks, I con‐
෽irm that baboons can understand the intruder task and generalize
across stimuli, but fail to generalize to quadrilateral shapes. With
extensive training on the quadrilateral shapes, their overall average
performance eventually reaches to the level of untrained 5‐year‐old
children, but baboons display no evidence of the geometric regularity
effect detected in humans: all shapes elicit similar behavior.

Many different arti෽icial neural networks of object recognition, of dif‐
ferent architecture, ෽it all baboons’ data well, but explaining humans’
behavior requires using additional symbolic properties such as the
presence of right angles (I zoom in on this speci෽ic symbolic property
in chapter 4). Symbolic models of the humans’ behavior generalize to
several related tasks, which validates the robustness of the choice of
geometric primitives included in the model. This sharp dissociation
suggests that two strategies are available to encode geometric shapes:
both humans and non‐human primates share a perceptual strategy,
well captured by models of the ventral visual pathway, but only
human have access to an exact, symbolic strategy. This indicates a
putative signature of human singularity and provides a challenge for
nonsymbolic models of human shape perception going forward.

This chapter corresponds to an article published in PNAS under the fol‐
lowing reference: Sablé‐Meyer, M., Fagot, J., Caparos, S., Kerkoerle, T.
van, Amalric, M., & Dehaene, S. (2021). Sensitivity to geometric shape
regularity in humans and baboons: A putative signature of human sin‐
gularity. Proceedings of the National Academy of Sciences, 118(16).

In chapter 2, I use neuroimaging techniques to shed light on the neu‐
ral implementation of the two strategies put forward in chapter 1.

First, I use a new behavioral visual search task to measure the con‐
fusion matrix across the quadrilaterals designed in chapter 1, and
model it with the symbolic model and the neural network. I also show
that a data‐driven decomposition of the complexity matrix coincides
with the already proposed symbolic model. This provides me with
both a replication of the results from chapter 1, a data‐driven way
to see what drives the geometrical regularity effect, and a confusion
matrix that I will be able to use both in chapter 2 and in chapter 3 to
model neuroimaging data.
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Then, to make a task compatible with both adults and infants, I design
a purely passive oddball paradigm: participants are shown the quadri‐
lateral shapes of chapter 1 centered on a screen with random scaling
and rotation, once per second, with the possibility of a deviant every
once in awhile. In twenty adults tested for 90minutes inMEG, I can de‐
code the brain signal associatedwith oddballs, and the performance of
the decoder replicates the geometric regularity effect. Using Represen‐
tational Similarity Analysis, I show that the brain signal ෽irst resembles
the neural network model, and then the symbolic model, indicating
that the two models exist in adults despite the fact that their behav‐
ior only re෽lects the symbolic model. Using source reconstruction, I
show that the neural network model corresponds to a bilateral occip‐
ital cluster of sources, while the symbolic model is associated with a
wide cluster which includes frontal sources and sources in the dorsal
pathway.
This provides a replication of the behavioral data with a passive
presentation paradigm, wherein intruders are detectable inasmuch
as they are intruder of regular shapes. On top of this, this con෽irms
the proposition from chapter 1 that both strategies are present in ed‐
ucated adults, a result invisible from the behavior alone but necessary
to understand the data from the ෽irst chapter. Finally, this provides
both a spatial and temporal dissociation of the bottom‐up ventral
visual pathway of shape processing, early and transitory, located
in the occipital area, followed by a top‐down symbolic processing,
spanning over a much broader brain area.
In two groups of 20 three‐month‐old infants, I try to replicate this ex‐
periment while measuring the EEG activation. Preliminary results are
inconclusive as to the intruder detection, but it appears that the differ‐
ent shapes are represented differently from one another in a way that
is compatible with the geometric regularity effect in infants already.
The results from infants are preliminary and I am still working on this
project.

In chapter 3, I use 3T fMRI in twenty adults and twenty 6‐year‐old
children to more accurately localize the areas associated with geomet‐
ric shape perception across education.
Using a category localizer, with typical visual categories (faces, ob‐
jects, etc.) as well as words, numbers, and geometric shapes, I ෽ind
that passive geometric perception, when contrasted to other visual
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objects, over activates a network of bilateral IPS brain areas typically
associated with non‐linguistic mathematic and number processing.
Conversely, geometric shapes are under‐activating the ventral visual
pathways, when compared to the other visual categories such as
faces, objects and houses. This result holds for both age groups,
indicating that the core mechanisms at play in geometric shape are
already present in six‐year‐old children. Further exploration of the
ventral, under activated cluster reveals that even though intuitively
one might think that shape processing resembles letter reading, or
visual processing of faces, or visual processing of objects, or other
general visual processing, none of the areas typically associated to
these categories are strongly activated by geometric shapes.

Inside the fMRI, participants additionally performed a variation of the
intruder test from chapter 1where they had to indicate the location of
an intruding shape on screen. Both age groups performed a simple ver‐
sion of the task, and additionally adults performed a harder version of
the task. The behavior from inside the scanner replicates our previous
experiments really well, including an overall ranking of performance
across age groups and dif෽iculty, indicating that even under moderate
time pressure the geometric regularity effect is present.

Data from adults in the easy condition yielded broad, bilateral clusters
that show increased activity as a function of the complexity of the
shape. On top of this, Representational Similarity Analysis detected
signi෽icant clusters associated with both the neural network model,
mostly inside visual areas, and the symbolic model, mostly in around
the IPS. Both models were as de෽ined in chapter 1 and chapter 2.
There were also some areas associated to both models, mostly in de‐
cision processing areas, suggesting an integrating process weighting
the two sources of information, possibly when participants have to
answer.

In chapter 4, I focus on a single geometric property: right angles. I
compare the behavior of educated adults and baboons in a delayed
match‐to‐sample task involving various angles and relative distrac‐
tors. The question is whether speci෽ic angles, namely 0°, 90° and 180°
(corresponding to aligned lines, perpendicular lines, and parallel
lines) elicit behavior that is categorically different from other angles,
as indicated mainly by a much sharper sensitivity to deviation from
the reference angle. The task tests equally spaced angles: 0°, 30°, 60°,
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90°, 120°, 150° and 180°. With each trial, distractors are sampled
from neighboring angles distant from 10°, 20°, 30°, 40°, 50° on either
side. Then the comparison of the performance between an angle and
its neighbors (e.g. 90° versus 80° and 100°, compared to 30° versus
20° and 40°) informs us on participants’ sensitivity to speci෽ic angles.
In trying to replicate classical results on the categorical perception of
right angles in adults, I put forward the fact that several properties are
required for right angles to elicit behavior that differs fromotherneigh‐
boring angles: (i) the stimuli need to be displayed long enough, and (ii)
no other low‐level property can be used to perform the task. Both re‐
sults coincide with the idea that symbolic properties require attention
as put forward in chapter 1, but these are new results that were not
evident given the literature on the categorical perception of right an‐
gles.
I also present early data collected in baboons where the performance
is very good for 0° and 180°, and poor everywhere else. However, data
collected so far only correspond to a subset condition where humans
do not display categorical perception of geometric shape either, and
therefore its absence in baboons is not theoretically very informative.

In chapter 5, I go beyond a small set of highly controlled quadrilat‐
erals and I set to try to account for all geometric shapes produced by
humans. To do so, I make a concrete proposition for a generative men‐
tal language of geometric shapes inspired by attested human geomet‐
ric productions, which has to satisfy two constraints: short programs
must generate simple shapes (for humans), and simple shapes must
have small programs.
It is in that chapter that I fully develop the argument that perceiving a
shape is equivalent to program induction: ෽inding the shortest mental
program in this internal language that generates that particular shape.
First, for the language I propose, I show that program induction is in
principle a tractable problem: to that end, I use the DreamCoder al‐
gorithm I helped implement before my PhD, and show that it can suc‐
cessfully ෽ind the shortest program for a given shape. Then, I use this
language to generate shapes of increasingly high complexity and show
that humans’ performance in amatch‐to‐sample task for a shape corre‐
lates with the length of its shortest program, above and beyond many
other perceptual features that are otherwise typically attested in the
literature.
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On top of this, I put forward the observation that DreamCoder imple‐
ments a plausible theory of how different cultures produce drawings
that look very different, e.g. Celtic curvilinear productions versus
Greek rectilinear productions. Although DreamCoder has a single
language for geometry to start with, when it is trained it learns both
new primitives and new biases as it solves new tasks. In doing so,
slowly DreamCoder drifts in speci෽ic directions throughout its training
procedure. The same could be true of cultural drifts, where basic
shapes are shared by everyone (circles and squares for example), but
complex shapes reuse intermediary building blocks that are learned
from the basic primitives, and over time this constitutes a visible drift
in the productions of different cultures.

Finally, to decouple my result from my exact language proposition, I
also derive general additive rules that any alternative languages must
obey. I design a new experiment with a new set of shapes to test this
hypothesis and con෽irm that concatenation, repetition and embedding
are essential to capture the compositional nature of geometric shape
complexity. To make this more concrete, I show that the mental rep‐
resentation of a shape that is “a square made out of smaller squares”
induces a saving, wherein a saving is induced by the fact that both the
local and the global shapes are identical, indicating the necessity for
recursion in humans’ geometric shape perception.

This chapter corresponds to an article published in Cognitive Psy‐
chology under the following reference: Sablé‐Meyer, M., Ellis, K.,
Tenenbaum, J., & Dehaene, S. (2022). A language of thought for the
mental representation of geometric shapes. Cognitive Psychology,
139, 101527.

Conclusion

Natural language is not the only hallmark of humans’ singular cogni‐
tive abilities. In thework presented here, and in linewith the language
of thought literature, I argue that there could exist several internal “lan‐
guages of thought”, and that geometric shapes could be a pivotalway to
study non‐linguistic, high‐level structured cognitive processes. To do
so, I show that cognition involving geometric shapes requires a set of
discrete, symbolic mental representations that act as an internal men‐
tal language with compositional properties. With cultural psychology
and developmental psychology methodology, I argue that this ability
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does not depend on education, age or culture. Using comparative cog‐
nition methods, I provide evidence that non‐human primates cannot
access these symbolic representations. I claim that under that view,
perceiving a shape is comparable to the process of program induction:
෽inding the shape’s shortest representation in the internal mental lan‐
guage. I show neural evidence of this in humans, using both MEG and
fMRI, and I model the data with state of the arts models inspired by
several ෽ields: neural networks from the AI literature, neurosymbolic
models from AI and computer science, and discrete symbolic models
commonly employed in psychology.

Résumé Détaillé (Français)

Ainsi certes, nous ne pourrions jamais connaı̂tre le triangle
géométrique par celui que nous voyons tracé sur le papier, si
notre esprit d’ailleurs n’en avait eu l’idée

Descartes, Cinq Rép., AT VII, 382 ; OC IV‐1, 574.

Qu'est‐ce qu'unpoint ? Euclide a donné le coupd'envoi de la géométrie
telle que nous la connaissons aujourd'hui avec sa dé෽inition n°1, ”Un
point est ce qui n'a aucune partie” (”Σημειον εστιν, ου μερος ουθεν”
(Byrne & Euclid, 1847)). Il n'existe aucune entité physique à laquelle
cette dé෽inition puisse s’appliquer ; un point ne peut donc exister que
dans l'esprit de celui qui y pense. Quels mécanismes mentaux et neu‐
ronaux permettent de former de tels concepts ? Ces mécanismes sont‐
ils uniquement présents chez l’humain, et sont‐ils liés irrémédiable‐
ment à sa possession du langage naturel ? Dans mon travail de thèse,
je défends l’idée quemême les concepts géométriques les plus simples
ne sont présents que chez les humains, et qu'ils sont à la base d'un sys‐
tème génératif de formes qui se comporte comme un langage mental
interne. Je montre que les humains, quels que soient leur âge, leur cul‐
ture et leur niveau d'éducation, partagent ce sens de la géométrie, et
j'explore les mécanismes neuronaux qui sous‐tendent cette capacité.
Dans ma thèse, j’expose l’idée que tous les humains, et seulement les
humains, représentent mentalement les formes comme étant bien
plus que leurs impressions visuelles, en superposant une structure à
la perception visuelle. Plus précisément, je dis que les humains possè‐
dent la capacité de représenter les formes géométriques en utilisant
un langage interne, spécialisé pour cette représentation. Je fournis
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des preuves expérimentales que les humains déploient naturellement
ce mécanisme lorsqu'ils sont confrontés à des formes géométriques,
en plus d'autres mécanismes de perception. Je montre que ce résultat
ne dépend ni de l'éducation, ni de la culture, ni de l'âge, en testant
diverses populations sur lamême tâche. Aള titre de contraste, je fournis
des preuves que les babouins ne possèdent pas cette compétence,
ou ne la déploient pas même lorsqu'elle serait extrêmement utile. Je
modélise le contraste entre les humains et les primates non humains
avec deux classes de modèles fondamentalement différents.
Je mets ensuite en avant des preuves neuronales en faveur de proces‐
sus cognitifs liés à ces deux modèles, en utilisant à la fois la MEG et
l'IRMf chez des adultes humains, des enfants de 6 ans et, dans une
mesure limitée, des nourrissons de 3 mois. En෽in, en m'appuyant sur
l'informatique et l'IA ainsi que sur la psychologie cognitive, je fais
une proposition concrète pour un langage mental pour les formes
géométriques. Je teste sa validité comportementale, puis je fais la
démonstration qu'un modèle neuro‐symbolique peut implémenter
une théorie de la perception des formes sous forme d'induction de
programme, et je véri෽ie de que certaines hypothèses cruciales qui
sous‐tendent ma proposition de langage doivent être vraies pour tout
autre propositions, en faisant ainsi un résultat plus général.
Ci‐dessous, je commence par donner un très bref aperçu de la littéra‐
ture sur la productionde formesgéométriques à travers l'histoire et les
cultures, ainsi qu'une revue de la littérature en sciences cognitives con‐
cernant la géométrie chez l'humain. Je présenterai ensuite l'hypothèse
du langage de la pensée (Language Of Thought Hypothesis, LOTH), en
mettant l'accent sur les programmes comme candidats pour la nature
des représentations mentales. Je relierai la LOTH à la recherche en sci‐
ences cognitives effectuée à l'aide de la théorie de l'information. En෽in,
je présenterai et résumerai brièvement la structure du travail rapporté
dans ma thèse, chapitre par chapitre.

Preuve des productions géométriques chez l'homme

Preuves paléontologiques

Les preuves de l'existence de concepts abstraits en géométrie, no‐
tamment la rectilinéarité, le parallélisme, la perpendicularité et les
symétries, sont très répandues tout au long de la préhistoire. Il y a
environ 70 000 ans, un Homo Sapiens de la grotte de Blombos a
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Figure 15: Les formes géométriques dans l'histoire de l'humanité. A, exemples de dessins et de construc‐
tions géométriques à petite et grande échelle (De gauche à droite et de haut en bas : une dalle gravée des
grottes de Blombos datant d'environ 70.000 ans (Henshilwood et al., 2002); motif en zigzag gravé sur un co‐
quillage à Java il y a environ 540.000 ans (J. C. A. Joordens et al., 2015); cromlech elliptique de l'âge du bronze
de Boscawen‐Ûn en Cornouailles ; gravure en spirale sur pierre sur Signal Hill dans le parc national de Saguaro,
Arizona, datée de 550 à 1550 ans ; formes géométriques sous la peinture d'un Mégalocéros à Lascaux, France,
souvent datée de 17.000 ans)
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sculpté un morceau d'ocre avec trois ensembles imbriqués de lignes
parallèles formant des triangles équilatéraux, des diamants et des
hexagones (Henshilwood et al., 2002). Bien plus tôt, il y a environ
540 000 ans, un Homo Erectus de Java a gravé un motif en zigzag
sur un coquillage (J. C. A. Joordens et al., 2015). Un tel zig‐zag peut
sembler simple, mais il respecte approximativement les contraintes
géométriques de longueurs égales, d'angles égaux et de parallélisme,
et est sans aucun doute attribué au genre homo.
Plus tôt encore, il y a environ 1,8million d'années, les anciens humains
sculptaient des sphéroı̈des (pierres en forme de sphère) et des bifaces
‐ pierres possédant deux plans de symétrie orthogonaux (Le Tensorer,
2006). Le grand nombre de bifaces, leur symétrie quasi‐parfaite
(qui n'est pas nécessaire pour qu'ils fonctionnent comme des outils
ef෽icaces (Le Tensorer, 2006)), et les preuves archéologiques que
beaucoup d'entre eux n'ont jamais été utilisés comme outils, sug‐
gèrent qu'un désir esthétique de symétrie était déjà présent chez ces
anciens humains.

Preuves anthropologiques et interculturelles

L'anthropologie cognitive contemporaine corrobore ces résultats. Des
tests cognitifs réalisés dans des groupes humains relativement isolés,
comme les Mundurucu d'Amazonie, les Himba de Namibie ou les
groupes indigènes du nord de l'Australie, montrent qu'en l'absence
d'une éducation occidentale formelle en mathématiques, les adultes
et même les enfants possèdent déjà de fortes intuitions des concepts
numériques et géométriques (Amalric et al., 2017; Butterworth et
al., 2008; Dehaene et al., 2006; Izard et al., 2011; Pica et al., 2004;
Sablé‐Meyer, Fagot, et al., 2021).
En effet, les adultes sans éducation occidentale formelle partagent
avec les enfants occidentaux d'âge préscolaire un vaste répertoire
de concepts géométriques abstraits (Dehaene et al., 2006) et les
utilisent pour saisir les régularités des séquences spatiales (Amalric
et al., 2017) et les formes quadrilatérales telles que les carrés ou les
parallélogrammes (Sablé‐Meyer, Fagot, et al., 2021). Ils possèdent
également des intuitions sophistiquées sur le comportement des
lignes parallèles en géométrie planaire et sphérique, comme l'unicité
d'une ligne parallèle passant par un point donné du plan (Izard et al.,
2011).
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Preuves développementales

Un autre élément de preuve découle des données sur le développe‐
ment. Il a été démontré que les enfants d'âge préscolaire et même
les nourrissons possèdent des intuitions sophistiquées de l'espace
(Hermer & Spelke, 1994; Landau et al., 1981; Newcombe et al., 2005),
des séquences spatiales (Amalric et al., 2017), et de la symétrie des
miroirs (Bornstein et al., 1978). En effet, les dessins des enfants d'âge
préscolaire montrent déjà une tendance à représenter les propriétés
abstraites des objets plutôt que l'objet lui‐même. Bien qu'ils aient
l'air primitifs, les dessins d'une maison sous la forme d'un triangle
au‐dessus d'un carré, ou d'une personne sous la forme d'un bâton
avec une tête ronde, suggèrent une capacité remarquable à faire
abstraction de la forme réelle et à s'intéresser à ses axes principaux,
au détriment du réalisme. De nombreux tests exploitent cette com‐
pétence géométrique pour évaluer le développement cognitif d'un
enfant en comptant le nombre de propriétés abstraites correctes
ou incorrectes, par exemple lorsqu'on lui demande de dessiner une
personne (Goodenough, 1926; Harris, 1963; Long et al., 2019; Prewett
et al., 1988; Reynolds & Hickman, 2004). Il existe certaines preuves,
bien que limitées, que cette capacité pourrait être spéci෽iquement
humaine : lorsqu'on leur donne des crayons ou une tablette, d'autres
primates non humains ne dessinent aucune forme abstraite ou ෽igure
reconnaissable, mais génèrent surtout des gribouillages informes
(Saito et al., 2014; Tanaka et al., 2003).

Les programmes comme candidats aux représentationsmen‐
tales : Une prise sur l'hypothèse du langage de la pensée

”Les humains ont une capacité et une propension
multi‐domaines à déduire des structures arborescentes à
partir de chaı̂nes de caractères, à un degré qui est dif෽icile ou
impossible pour la plupart des espèces animales non
humaines”

W. Tecumseh Fitch(Fitch, 2014)

Primitives géométriques de la cognition

En sciences cognitives, la première application de la théorie de
l'information à la perception visuelle provient des travaux de At‐
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tneave (1954). Il a observé qu’une perception visuelle est souvent
redondante : de nombreuses parties pourraient être cachées et
pourtant reconstruite avec succès par un observateur humain. Il en
déduit que la représentation mentale d'un percept visuel doit tirer
parti de cette redondance pour compresser l'information visuelle, et
à l’inverse en reconstruire et en inférer des parties manquantes. Pour
les formes géométriques spéci෽iquement, la plus ancienne théorie
de « programmes » représentant des formes géométriques vient de
Leeuwenberg et ses collègues (E. L. Leeuwenberg, 1969, 1971; Boselie
& Leeuwenberg, 1986), qui ont proposé un langage de programmation
formel pour les formes bidimensionnelles et tridimensionnelles. Ils
défendent l’idée que la représentation mentale internet d'une forme
est d’autant plus complexe que le plus petit programme qui génère
cette forme est long, de ce langage. C’est une propriété que je défends
également au chapitre 5. En fait, Leeuwenberg observe déjà que cer‐
tains éléments de leur langage sont très généraux, et qu'ils pourraient
être appliqués à la compression de séquences auditives également,
une propriété qui a été retrouvée dans des travaux récents sur les
séquences géométriques dans le domaine visuel puis auditif (Amalric
et al., 2017; Planton et al., 2021). En plus des avancées théoriques,
ils fournissent un certain soutien empirique à leur proposition, mais
concluent en disant que ”[...] pour l'instant [la procédure de codage
proposée] ne se prêtera guère à la programmation informatique”. De
nos jours, cette limitation ne s’applique plus, et j'aborde ce sujet au
chapitre 5. Je compare cette approche à d'autres, notamment celle de
Leyton (Leyton, 1984, 2003) dans le corps de la thèse.

Complexité de Kolmogorov et LMD

Selon une hypothèse cognitive de longue date, le cerveau excelle dans
la compression des informations. En effet, en présence de structure
dans les stimuli, qu'ils soient visuels, auditifs ou autre, le score de par‐
ticipants s'amélioredansunegrandevariété de tâches. Lapremière ob‐
servation de ce phénomène provient deMiller (1956), qui déclare ”J'ai
pris l'habitude de faire la distinction entre les unités d'information et
les morceaux d'information. [...] L'étendue de la mémoire immédiate
semble être presque indépendante du nombre d’unités par morceau,
du moins sur la plage qui a été examinée jusqu'à présent.” On trouve
des exemples de ce phénomène dans la vie courante par exemple dans
lamémorisation demots, où le facteur principal est le nombre demots
et non le nombre de lettres, mais des observations similaires sont om‐
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niprésentes en psychologie.
Une version forte de cette hypothèse af෽irme que le cerveau trouve
la structure d'une manière plus riche que le regroupement par
morceaux, et s'appuie à la place sur des langages génératifs (de
programmation) : la complexité d'un élément d'information donné
est alors la longueur du programme le plus court qui génère cette
information (Goodman et al., 2012; Tenenbaum et al., 2011). Cette
hypothèse est liée à l'hypothèse du codage prédictif, car la capacité
de prédire et de générer peut être liée aux langages génératifs. En
outre, pour les langages de programmation probabilistes, les théories
des langages génératifs ont la capacité de rendre compte à la fois des
succès et des erreurs du comportement humain : une caractéristique
cruciale d'une bonne théorie pour expliquer des phénomènes cogni‐
tifs. Qui plus est, de telles théories peuvent envisager la coexistence
de plusieurs représentations mentales possibles avec des probabilités
différentes, et donc rendre compte des représentations ambiguës ou
sous‐déterminées.
Le choix du langage de programmation a une grande importance, car
différents choix peuvent faire des prédictions très différentes. Et il
n'est pas évident de trouver une proposition uni෽icatrice qui puisse
rendre compte de stimuli de nature très différente (auditifs, visuels,
physiques intuitifs, etc.). Heureusement, un domaine de recherche
entier étudie un problème connexe : le domaine de la théorie de
l'information. Ce domaine étudie des questions théoriques telles que
”quelle est la manière la plus ef෽icace en termes d'information pour
représenter un ensemble donné et ses éléments”. Dans l'introduction
de ma thèse, je décris deux notions de ce domaine et je montre com‐
ment elles sont liées : La complexité de Kolmogorov, et la longueur
minimale de description (LMD). Je discute de l'in෽luence et de l'utilité
qu'elles peuvent avoir lors de la spéci෽ication des théories cognitives.

Cognition et induction de programmes

Si les représentations mentales ont des propriétés qui les font ressem‐
bler à des programmes, il est alors crucial de proposer une théorie sur
la manière dont ces programmes sont inférés : comment passe‐t‐on
des entrées sensorielles à la représentation structurée ? Quels sont
les bons modèles de ”construction de programmes mentaux” ?
En informatique, le sous‐domaine qui s'attaque à cette question est
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celui de ”l'induction de programme” : le problème de l'induction de
programme est de trouver un programme, étant donné un ensemble
de paires d'exemples d'entrée‐sortie. Une observation immédiate est
que c’est un problème sous‐spéci෽ié : pour une taille d’entrée ෽inie,
il existe un nombre in෽ini de programmes qui peuvent fonctionner,
mais ils se comporteront différemment sur une nouvelle entrée ‐
en l'absence de quoi la notion de ”programme correct” ne peut être
décidée. Mais si l'on donne suf෽isamment d'exemples, la longueur du
programme peut être utilisée comme stratégie de sélection dans un
modèle probabiliste de génération de programmes. Je prétends que
lorsqu’ils cherchent une forme géométrique, les humains cherchent,
et trouvent, le programme le plus court, et donc que la complexité
d'une forme sera prédite par sa LMD dans un langage bien choisi pour
un domaine donné.
Une base de référence pour résoudre l'induction de programme est
l'énumération de programmes : énumérer récursivement tous les pro‐
grammes possibles dans la grammaire d'un langage de programma‐
tion jusqu'à trouver un programme qui satisfait les contraintes. Mais
cette procédure est un piètre candidat pour une implémentation cogni‐
tive de l'induction de programme dans le cadre de l'hypothèse LMD : si
nous considérons que la complexité d'un certain programme est fonc‐
tion de sa LMD, alors dans le cadre de cette approche, la complexité
de la recherche de ce programme croı̂trait exponentiellement avec sa
LMD. Cependant, plusieurs méthodes ont été conçues pour tenter de
contenir cette explosion combinatoire, je les décris dans l'introduction
de la thèse et je m'appuie sur DreamCoder (Ellis et al., 2021), que j'ai
contribué à mettre en œuvre, au chapitre 5.

Structure des chapitres

Dans le chapitre 1, je montre que même dans leur façon d’effectuer
une détection d'un intrus parmi des quadrilatères, les humains et les
primates non humains diffèrent. En utilisant une tâche de détection
d’intru qui utilise des quadrilatères de régularité différente, allant de
carrés très réguliers à des quadrilatères irréguliers, je montre que des
humains d'éducation, d'âge et de culture différentes partagent un sens
commun de la complexité géométrique : certaines formes suscitent
systématiquement de meilleures performances que d'autres. Par ex‐
emple, lorsqu'ils cherchent un intrus parmi des carrés, les participants
sont rapides et précis, mais lorsqu'ils cherchent un intrus parmi des
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Chapter 1: Sensitivity to geometric shape regularity in humans and baboons: A putative signature of human singularity

Chapter 2: M/EEG evidence for symbolic and non-symbolic neural mechanisms of geometric shape perception in adults and infants

Chapter 3: Geometric Shape Perception Activates Brain Regions Associated with Mathematical Cognition, an fMRI study

Chapter 4: Categorical perception of right angles in humans and baboons

Chapter 5: A Language of Thought for the Mental Representation of Geometric Shapes
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formes irrégulières identiques, les participants sont lents et peu précis.
Jemontre que cette observation reste vraie avec différents paradigmes
tels que la recherche visuelle ou un classement introspectif des formes,
suggérant un effet fort et facile à reproduire.
En revanche, les babouins n'ont pas cette sensibilité aux formes,
même après un entraı̂nement intensif adéquat : sur une séquence
de tâches de détection d’intru de plus en plus dif෽iciles, je con෽irme
que les babouins peuvent comprendre la tâche et généraliser entre
les stimuli, mais qu'ils ne parviennent pas à généraliser aux formes
quadrilatérales. Même avec un entraı̂nement intensif sur les formes
quadrilatérales, leur performance moyenne globale ෽init par atteindre
le niveau d'enfants de 5 ans non entraı̂nés, mais les babouins ne
font pas preuve de l'effet de régularité géométrique détecté chez les
humains : toutes les formes suscitent un comportement similaire.
De nombreux réseaux de neurones arti෽iciels de reconnaissance
d'objets, d'architecture différente, ont un comportement comparable
à celui des babouins, mais expliquer le comportement des humains
nécessite d'utiliser des propriétés symboliques supplémentaires
telles que la présence de parallèles ou d'angles droits (je m'attarde
sur cette propriété symbolique spéci෽ique au chapitre 4). Les modèles
symboliques du comportement des humains prédisent plusieurs
tâches connexes, ce qui valide la robustesse du choix des primitives
géométriques incluses dans le modèle. Cette forte dissociation
entre les humains et les babouins suggère que deux stratégies sont
disponibles pour encoder les formes géométriques : les humains et
les primates non humains partagent une stratégie perceptive, bien
capturée par les modèles de la voie visuelle ventrale, mais seuls les hu‐
mains ont accès à une stratégie exacte, symbolique. Cela suggère une
possible signature de la singularité humaine dans une tâche visuelle
très simple, et constitue un dé෽i pour les modèles non symboliques de
la perception des formes humaines à l'avenir.
Ce chapitre correspond à un article publié dans PNAS sous la référence
suivante : Sablé‐Meyer, M., Fagot, J., Caparos, S., Kerkoerle, T. van,
Amalric, M., & Dehaene, S. (2021). Sensitivity to geometric shape reg‐
ularity in humans and baboons: A putative signature of human singu‐
larity. Proceedings of the National Academy of Sciences, 118(16).

Dans le chapitre 2, j'utilise des techniques de neuro‐imagerie pour
mettre en lumière l'implémentationneuronale des deux stratégies pro‐

267



Appendix

posées au chapitre 1.

Tout d'abord, j'utilise une nouvelle tâche comportementale de
recherche visuelle pour mesurer la matrice de confusion entre les
quadrilatères conçus au chapitre 1, et je la modélise à nouveau avec
le modèle symbolique et le réseau neuronal. Je montre également
qu'une décomposition de la matrice de complexité basée sur les
données coı̈ncide avec le modèle symbolique déjà proposé. Cela me
fournit à la fois une réplication des résultats du chapitre 1, une façon
guidée par les données de voir ce qui domine l'effet de régularité
géométrique, et une matrice de confusion que je pourrai utiliser à
la fois dans le chapitre 2 et dans le chapitre 3 pour modéliser les
données de neuro‐imagerie.

Ensuite, pour rendre une tâche compatible avec des adultes et des
nourrissons, je conçois un paradigme d’« oddball » purement passif :
les participants voient les quadrilatères du chapitre 1 centrées sur un
écran avec une taille et une rotation aléatoires, une fois par seconde,
avec de un déviant de temps en temps, à des moments tirés au
hasard. Chez vingt adultes testés pendant 90 minutes en MEG, je peux
décoder le signal cérébral associé aux déviants, et la performance
du décodage reproduit l'effet de régularité géométrique. En utilisant
une analyse en similarité représentationnelle (RSA), je montre que le
signal cérébral ressemble d'abord aumodèle du réseau neuronal, puis
au modèle symbolique, ce qui indique que les deux modèles existent
chez les adultes malgré le fait que leur comportement ne re෽lète que
le modèle symbolique. En utilisant de la reconstruction de sources,
je montre que le modèle de réseau neuronal correspond à un groupe
de sources occipital bilatéral, tandis que le modèle symbolique est
associé à un large groupe de sources, qui inclut des sources frontales
et des sources dans la voie dorsale.

Cela permet de reproduire les données comportementales avec
un paradigme de présentation passive, dans lequel les intrus sont
d’autant plus détectables qu’il s'agit d'intrus de formes régulières. De
plus, cela con෽irme la proposition du chapitre 1 selon laquelle les deux
stratégies sont présentes chez les adultes éduqués, un résultat invisi‐
ble à partir du comportement seul mais nécessaire pour comprendre
les données du premier chapitre. En෽in, cela fournit une dissociation
spatiale et temporelle de la voie visuelle ventrale « bottom‐up »
du traitement des formes, précoce et transitoire, située dans la zone
occipitale, suivie d'un traitement symbolique « top‐down », s'étendant
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sur une zone cérébrale beaucoup plus large.
Dans deux groupes de 20 nourrissons de trois mois, j'essaie de
reproduire cette expérience en mesurant l'activité cérébrale mesurée
en EEG. Les résultats préliminaires ne sont pas concluants quant à la
détection des intrus, mais il semble que les différentes formes soient
représentées différemment les unes des autres d'une manière qui
est compatible avec l'effet de régularité géométrique déjà observé
chez les nourrissons. Les résultats obtenus chez les nourrissons sont
préliminaires et je travaille encore sur ce projet.

Dans le chapitre 3, j'utilise l'IRMf 3T chez vingt adultes et vingt en‐
fants de 6 ans pour localiser plus précisément les zones associées à la
perception des formes géométriques à travers l'éducation.
Aള l'aide d'un localisateur de catégories visuelles, avec des catégories
visuelles usuelles (visages, objets, etc.) ainsi que des mots, des nom‐
bres et des formes géométriques, j’ai pu constater que la perception
de formes géométriques, par opposition aux autres objets visuels,
sur‐active un réseau cortical dans le sulcus intrapariétal, de façon
bilatérale, dans des régions typiquement associées au traitement
de nombres et d’énoncés mathématique. Aള l'inverse, les formes
géométriques sous‐activent les voies visuelles ventrales, lorsqu'elles
sont comparées aux autres catégories visuelles telles que les visages,
les objets et les maisons. Ce résultat est valable pour les deux groupes
d'âge, ce qui indique que les mécanismes fondamentaux en jeu dans
les formes géométriques sont déjà présents chez les enfants de six ans.
Une exploration plus approfondie du groupe ventral sous‐activé révèle
que même si, intuitivement, on pourrait penser que le traitement
des formes ressemble à la lecture des lettres, au traitement visuel
des visages, au traitement visuel des objets ou à d'autres traitements
visuels généraux, aucune des zones typiquement associées à ces
catégories n'est fortement activée par les formes géométriques.
Aള l'intérieur de l'IRMf, les participants ont aussi effectué une variante
du test de l'intrus du chapitre 1 où ils devaient indiquer l'emplacement
d'une forme déviante sur l'écran. Les deux groupes d'âge ont effec‐
tué une version simple de la tâche, et les adultes ont en plus effectué
une version plus dif෽icile de la tâche. Le comportement à l'intérieur
du scanner reproduit très bien les expériences précédentes, y compris
un classement général des performances entre les groupes d'âge et la
dif෽iculté, ce qui indiquequemêmeavecun temps limité, l'effet de régu‐
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larité géométrique est présent.

Les données provenant d'adultes dans la condition facile ont donné
lieu à de larges clusters bilatéraux qui montrent une activité accrue
en fonction de la complexité de la forme. En plus de cela, une analyse
en similarité représentationnelle a détecté des clusters signi෽icatifs
associés à la fois au modèle de réseau de neurones, principalement
à l'intérieur des aires visuelles, et au modèle symbolique, principale‐
ment autour de l'IPS. Les deux modèles sont ceux dé෽inis dans le
chapitre 1 et le chapitre 2. Il y avait également quelques zones asso‐
ciées aux deux modèles, principalement dans les zones de traitement
de la décision, ce qui suggère un processus d'intégration pondérant
les deux sources d'information, peut‐être lorsque les participants
doivent répondre.

Dans le chapitre 4, je me concentre sur une seule propriété
géométrique : les angles droits. Je compare le comportement
d'adultes éduqués et de babouins dans une tâche d'appariement
différé impliquant différents angles et leurs distracteurs relatifs. La
question est de savoir si des angles spéci෽iques, à savoir 0°, 90° et 180°
(correspondant à des lignes alignées, des lignes perpendiculaires et
des lignes parallèles) suscitent un comportement catégoriquement
différent des autres angles, comme l'indique principalement une
sensibilité beaucoup plus forte à la déviation de l'angle de référence.
La tâche teste des angles également espacés : 0°, 30°, 60°, 90°, 120°,
150° et 180°. Aള chaque essai, des distracteurs sont échantillonnés à
partir d'angles voisins distants de 10°, 20°, 30°, 40°, 50° de chaque
côté. Ensuite, la comparaison des performances entre un angle et
ses voisins (par exemple, 90° par rapport à 80° et 100°, par rapport
à 30° par rapport à 20° et 40°) nous informe sur la sensibilité des
participants à des angles spéci෽iques.

En essayant de reproduire des résultats classiques sur la perception
catégorielle des angles droits chez les adultes, j'ai mis en avant le fait
que plusieurs propriétés sont nécessaires pour que les angles droits
suscitent un comportement différent des autres angles voisins : (i)
les stimuli doivent être af෽ichés suf෽isamment longtemps, et (ii) au‐
cune autre propriété de bas niveau ne peut être utilisée pour réaliser
la tâche. Ces deux résultats coı̈ncident avec l'idée que les propriétés
symboliques requièrent une certaine attention de la part des partici‐
pants, comme énoncé au chapitre 1, mais il s'agit de nouveaux résul‐
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tats qui n'étaient pas évidents au vu de la littérature sur la perception
catégorielle des angles droits.
Je présente également les premières données recueillies chez les
babouins où les performances sont très bonnes pour 0° et 180°, et
médiocres partout ailleurs. Malheureusement, les données collec‐
tées jusqu'à présent ne correspondent qu'à un sous‐ensemble de
conditions où les humains ne présentent pas non plus de perception
catégorielle des formes géométriques, et donc son absence chez les
babouins n'est pas très informative sur les théories de la perception
des angles chez les humains et les babouins.

Dans le chapitre 5, Je vais au‐delà du petit ensemble de quadrilatères
hautement contrôlés utilisé précédemment, et j’essaye de rendre
compte de toutes les formes géométriques produites par les humains.
Pour ce faire, je fais une proposition concrète pour un langage men‐
tal génératif de formes géométriques inspiré par des productions
géométriques humaines attestées. Ma proposition satisfait deux
contraintes : les programmes courts doivent générer des formes
simples (pour les humains), et les formes simples doivent avoir des
programmes courts.
C'est dans ce chapitre que je développe pleinement l'argument
selon lequel la perception d'une forme donne lieu à de l'induction
de programme : pour une forme géométrique donnée, trouver le
programme mental le plus court dans le langage interne qui génère
cette forme. Tout d'abord, pour le langage que je propose, je montre
que l'induction de programme est en principe un problème qui peut
être résolu : à cette ෽in, j'utilise l'algorithme DreamCoder que j'ai aidé
à développer avant mon doctorat. Je montre qu'il peut trouver avec
succès le programme le plus court pour une forme donnée. Ensuite,
j'utilise ce langage pour générer des formes de plus en plus complexes,
et je montre que la performance des humains dans une tâche de
correspondance avec l'échantillon pour une forme est corrélée avec
la longueur de son programme le plus court, au‐delà de nombreuses
autres caractéristiques perceptives qui sont par ailleurs typiquement
attestées dans la littérature.
En plus de cela, je fais remarquer que DreamCoder met en œuvre
une théorie plausible de la façon dont différentes cultures se mettent
à produire des dessins qui ont l'air très différents, par exemple
les productions curvilignes celtiques et les productions rectilignes
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grecques. Bien que DreamCoder dispose au départ d'un langage
unique pour la géométrie, plus il est entraı̂né, plus il apprend à la fois
de nouvelles primitives et de nouveaux biais. Ce faisant, DreamCoder
dérive lentement dans des directions spéci෽iques tout au long de
sa procédure d’entraı̂nement. Il pourrait en être de même pour les
dérives culturelles, où les formes de base sont partagées par tous
(cercles et carrés par exemple), mais les formes complexes réutilisent
des blocs de construction intermédiaires qui sont appris à partir des
primitives de base, et au ෽il du temps cela constitue une dérive visible
dans les productions des différentes cultures.

En෽in, pour découpler mon résultat de ma proposition concrète de
langage, je dérive également des règles additives générales auxquelles
tout langage alternatif se doit d’obéir. Je conçois une nouvelle expéri‐
ence avec un nouvel ensemble de formes pour tester cette hypothèse,
et con෽irmer que la concaténation, la répétition et l'emboı̂tement sont
essentiels pour capturer la nature compositionnelle de la complexité
des formes géométriques. Pour rendre cela plus concret, je montre
que la représentationmentale d'une forme qui est « un carré composé
de carrés plus petits » induit une optimisation, qui vient du fait que les
formes locales et globales sont identiques. Ce qui indique la nécessité
de la récursion dans la perception des formes géométriques par les
humains.

Ce chapitre correspond à un article publié dans Cognitive Psychology
sous la référence suivante : Sablé‐Meyer, M., Ellis, K., Tenenbaum, J.,
& Dehaene, S. (2022). A language of thought for the mental represen‐
tation of geometric shapes. Cognitive Psychology, 139, 101527.

Conclusion

Le langage naturel n'est pas le seul signe distinctif des capacités
cognitives singulières des humains. Dans le travail présenté ici, et
dans la lignée de la littérature sur le langage de la pensée, je défends
l’idée qu'il pourrait exister plusieurs ”langages de la pensée” internes,
et que les formes géométriques constituent un levier très ef෽icace pour
étudier des processus cognitifs non linguistiques structurés. Pour ce
faire, je montre que la cognition impliquant des formes géométriques
nécessite un ensemble de représentations mentales discrètes et
symboliques qui agissent comme un langage mental interne, doté de
propriétés de composition. Grâce à la méthodologie de la psychologie
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culturelle et de la psychologie du développement, je démontre que
cette capacité ne dépend pas de l'éducation, de l'âge ou de la culture. Aള
l'aide de méthodes de cognition comparative, j'apporte la preuve que
les primates non humains ne peuvent accéder à ces représentations
symboliques. Partant de ce constat, j’af෽irme que la perception d'une
forme est comparable au processus d'induction de programme :
trouver la représentation la plus courte de la forme dans le langage
mental interne. Je présente des preuves neuronales de ce phénomène
chez l'humain, en utilisant à la fois la MEG et l'IRMf, et je modélise
les données avec des modèles inspirés de plusieurs domaines : les
réseaux neuronaux issus de la littérature sur l'intelligence arti෽icielle,
les modèles neurosymboliques, et les modèles symboliques discrets
couramment utilisés en psychologie.

Other Publications

Asmentioned in the introduction, in addition to the work presented in
this manuscript, two additional ෽irst‐author articles were published,
one from continued collaboration after an internship supervised by
Pr. Salvador Mascarenhas at ENS and the other one in a collaboration
with Lorenzo Ciccione, a friend and colleague. I provide the abstract
of these two articles hereafter and will happily share the full articles
upon request, but decided against including them in the manuscript
because they are not central to the overall argument presented here,
and to save paper when this manuscript is printed.
In addition to these two articles, I was a contributor (but not main au‐
thor) of two additional articles during that time period. The abstracts
are provided below.

First Author Publications

Indirect Illusory Inferences from Disjunction: A New Bridge Between De‐
ductive Inference and Representativeness

Published in Review of Philosophy and Psychology in 2021, authored
by myself and Pr. Salvador Mascarenhas.

Abstract. Weprovide a new link between deductive and probabilistic
reasoning fallacies. Illusory inferences from disjunction are a broad
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class of deductive fallacies traditionally explained by recourse to a
matching procedure that looks for content overlap between premises.
In two behavioral experiments, we show that this phenomenon is
instead sensitive to real‐world causal dependencies and not to exact
content overlap. A group of participants rated the strength of the
causal dependence between pairs of sentences. Thismeasure is a near
perfect predictor of fallacious reasoning by an independent group
of participants in illusory inference tasks with the same materials.
In light of these results, we argue that all extant accounts of these
deductive fallacies require non‐trivial adjustments. Crucially, these
novel indirect illusory inferences from disjunction bear a structural
similarity to seemingly unrelated probabilistic reasoning problems,
in particular the conjunction fallacy from the heuristics and biases
literature. This structural connection was entirely obscure in previ‐
ous work on these deductive problems, due to the theoretical and
empirical focus on content overlap. We argue that this structural
parallelism provides arguments against the need for rich descriptions
and individuating information in the conjunction fallacy, and we out‐
line a uni෽ied theory of deductive illusory inferences from disjunction
and the conjunction fallacy, in terms of Bayesian con෽irmation theory.

Analyzing the Misperception of Exponential Growth in Graphs

Published in Cognition in 2022, authored by Lorenzo Ciccione andmy‐
self (shared 1st authorship) and Stanislas Dehaene.

Abstract. Exponential growth is frequently underestimated, an
error that can have a heavy social cost in the context of epidemics.
To clarify its origins, we measured the human capacity (N = 521)
to extrapolate linear and exponential trends in scatterplots. Four
factors were manipulated: the function underlying the data (linear
or exponential), the response modality (pointing or venturing a
number), the scale on the y axis (linear or logarithmic), and the
amount of noise in the data. While linear extrapolation was precise
and largely unbiased, we observed a consistent underestimation of
noisy exponential growth, present for both pointing and numerical
responses. A biased ideal‐observer model could explain these data as
an occasional misperception of noisy exponential graphs as quadratic
curves. Importantly, this underestimation bias was mitigated by
participants' math knowledge, by using a logarithmic scale, and by
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presenting a noiseless exponential curve rather than a noisy data plot,
thus suggesting concrete avenues for interventions.

Contributing Author Publications

Symbols and Mental Programs: A Hypothesis about Human Singularity

Published in Trends In Cognitive Science in 2022, authored by Stanis‐
las Dehaene, Fosca Al Roumi, Yair Lakretz, Samuel Planton myself.

Abstract. Natural language is often seen as the single factor that ex‐
plains the cognitive singularity of the human species. Instead, we pro‐
pose that humans possessmultiple internal languages of thought, akin
to computer languages, which encode and compress structures in var‐
ious domains (mathematics, music, shape…). These languages rely on
cortical circuits distinct from classical language areas. Each is charac‐
terized by: (i) the discretization of a domain using a small set of sym‐
bols, and (ii) their recursive composition intomental programs that en‐
code nested repetitionswith variations. In various tasks of elementary
shape or sequence perception, minimumdescription length in the pro‐
posed languages captures human behavior and brain activity, whereas
non‐human primate data are captured by simpler nonsymbolic mod‐
els. Our research argues in favor of discrete symbolicmodels of human
thought.

DreamCoder: Bootstrapping Inductive Program Synthesis with Wake‐
Sleep Library Learning

Published in Proceedings of the International Conference on Pro‐
gramming Language Design and Implementation (PLDI), authored
by Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé‐Meyer,
Lucas Morales, Luke Hewitt, Luc Cary, Armando Solar‐Lezama, Joshua
B. Tenenbaum.

Abstract. We present a system for inductive program synthesis
called DreamCoder, which inputs a corpus of synthesis problems
each speci෽ied by one or a few examples, and automatically derives a
library of program components and a neural search policy that can be
used to ef෽iciently solve other similar synthesis problems. The library
and search policy bootstrap each other iteratively through a variant of
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”wake‐sleep” approximate Bayesian learning. A new refactoring algo‐
rithm based on E‐graphmatching identi෽ies common sub‐components
across synthesized programs, building a progressively deepening
library of abstractions capturing the structure of the input domain.
We evaluate on eight domains including classic program synthesis
areas and AI tasks such as planning, inverse graphics, and equation
discovery. We show that jointly learning the library and neural search
policy leads to solving more problems, and solving themmore quickly.
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ABSTRACT

Natural language is not the only hallmark of humans’ singular cognitive abilities: I propose
that  cognition involving geometric  shapes requires a set  of  discrete,  symbolic  mental
representations that act as a mental  language. First,  I  show that all  humans share a
sense of geometric complexity that baboons lack even after adequate training. Artificial
neural  networks  fit  baboons’  data,  but  explaining  humans’  behavior  requires  using
symbolic  properties such as the presence of  right  angles.  Then,  I  identify  the neural
dynamics  of  both  a  visual  and  a  symbolic  strategy  of  shape  perception  using  brain
imaging methods, and I provide preliminary evidence for the existence of the symbolic
strategy in infants. Finally, I propose and test an explicit mental language of geometry. 

MOTS CLÉS

Psychologie Cognitive Expérimentale ; Neurosciences Computationnelles ; Formes 
Géométriques ; Langage de la Pensée ; Abstraction in Cognition ; Structures in Cognition

RÉSUMÉ

Le langage naturel n’est pas la seule capacité cognitive qui distingue les humains. Dans
cette thèse, je défends l’idée que la cognition humaine des formes géométriques passe
par un langage mental. Dans une tâche de détection d’intrus, le comportement d’humains
est homogène et se distingue de celui des babouins dans son utilisation de propriétés
symboliques  comme  la  présence  d’angles  droits.  Grâce  à  une  dissociation
visuelle/symbolique, je rends compte de cette différence, et je modélise les processus
neuronaux de la perception de formes obtenus en imagerie cérébrale chez l’humain. Je
fournis aussi des preuves préliminaires de l’existence de la stratégie symbolique chez le
nourrisson. Enfin, je propose une version explicite de langage mental de la géométrie.

KEYWORDS

Experimental Cognitive Psychology; Computational Neurosciences; Geometric Shapes;
Language of Thought; Abstraction in Cognition; Structure in Cognition
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